Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T02:48:20.817Z Has data issue: false hasContentIssue false

Metrical Results on the Distribution of Fractional Parts of Powers of Real Numbers

Published online by Cambridge University Press:  29 November 2018

Yann Bugeaud
Affiliation:
IRMA UMR 7501, CNRS, Université de Strasbourg, 7, rue René Descartes, 67084 Strasbourg, France ([email protected])
Lingmin Liao
Affiliation:
LAMA UMR 8050, CNRS, Université Paris-Est Créteil, 61 Avenue du Général de Gaulle, 94010 Créteil Cedex, France ([email protected])
Michał Rams
Affiliation:
Institute of Mathematics Polish Academy of Sciences ul. Śniadeckich 8, 00-656 Warszawa, Poland ([email protected])

Abstract

We establish several new metrical results on the distribution properties of the sequence ({xn})n≥1, where {·} denotes the fractional part. Many of them are presented in a more general framework, in which the sequence of functions (xxn)n≥1 is replaced by a sequence (fn)n≥1, under some growth and regularity conditions on the functions fn.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Baker, S., On the distribution of powers of real numbers modulo 1, Unif. Distrib. Theory 10(2) (2015), 6775.Google Scholar
2.Barral, J. and Seuret, S., A localized Jarnik–Besicovich theorem, Adv. Math. 226(4) (2011), 31913215.Google Scholar
3.Beresnevich, V. and Velani, S., A mass transference principle and the Duffin–Schaeffer conjecture for Hausdorff measures, Ann. Math. (2) 164(3) (2006), 971992.Google Scholar
4.Borosh, I. and Fraenkel, A. S., A generalization of Jarník's theorem on Diophantine approximations, Indag. Math. 34 (1972), 193201.Google Scholar
5.Bugeaud, Y., Distribution modulo one and Diophantine approximation. Cambridge Tracts in Mathematics, Volume 193 (Cambridge University Press, 2012).Google Scholar
6.Bugeaud, Y. and Dubickas, A., On a problem of Mahler and Szekeres on approximation by roots of integers, Michigan Math. J. 56 (2008), 703715.Google Scholar
7.Bugeaud, Y. and Liao, L., Uniform Diophantine approximation related to b-ary and β-expansions, Ergodic Theory Dynam. Systems 36(1) (2016), 122.Google Scholar
8.Bugeaud, Y. and Moshchevitin, N., On fractional parts of powers of real numbers close to 1, Math. Z. 271(3–4) (2012), 627637.Google Scholar
9.Falconer, K. J., Fractal geometry, mathematical foundations and application (Wiley, 1990).Google Scholar
10.Falconer, K. J., Techniques in fractal geometry (Wiley, 1997).Google Scholar
11.Kahane, J. P., Sur la répartition des puissances modulo 1, C. R. Math. Acad. Sci. Paris 352(5) (2014), 383385.Google Scholar
12.Kim, D. H. and Liao, L., Dirichlet uniformly well-approximated numbers, Int. Math. Res. Not. IMRN (2018), in press.Google Scholar
13.Koksma, J. F., Ein mengentheoretischer Satz über die Gleichverteilung modulo Eins, Compos. Math. 2 (1935), 250258.Google Scholar
14.Koksma, J. F., Sur la théorie métrique des approximations diophantiques, Indag. Math. 7 (1945), 5470.Google Scholar
15.Mahler, K. and Szekeres, G., On the approximation of real numbers by roots of integers, Acta Arith. 12 (1967), 315320.Google Scholar
16.Pollington, A. D., The Hausdorff dimension of certain sets related to sequences which are not dense mod 1, Quart. J. Math. Oxford Ser. 31(2) (1980), 351361.Google Scholar