Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-24T02:30:17.533Z Has data issue: false hasContentIssue false

Maximal regularity for degenerate differential equations with infinite delay in periodic vector-valued function spaces

Published online by Cambridge University Press:  21 August 2013

Carlos Lizama
Affiliation:
Departamento de Matemática y Ciencia de la Computación, Universidad de Santiago de Chile, Casilla 307-Correo 2, Santiago, Chile ([email protected])
Rodrigo Ponce
Affiliation:
Instituto de Matemática y Física, Universidad de Talca, Casilla 747, Talca, Chile ([email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let A and M be closed linear operators defined on a complex Banach space X and let aL1(ℝ+) be a scalar kernel. We use operator-valued Fourier multipliers techniques to obtain necessary and sufficient conditions to guarantee the existence and uniqueness of periodic solutions to the equation

with initial condition Mu(0) = Mu(2π), solely in terms of spectral properties of the data. Our results are obtained in the scales of periodic Besov, Triebel–Lizorkin and Lebesgue vector-valued function spaces.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2013 

References

1.Amann, H., Operator-valued Fourier multipliers, vector-valued Besov spaces and applications, Math. Nachr. 186 (1997), 556.CrossRefGoogle Scholar
2.Amann, H., On the strong solvability of the Navier–Stokes equations, J. Math. Fluid. Mech. 2 (2000), 1698.CrossRefGoogle Scholar
3.Arendt, W. and Bu, S., The operator-valued Marcinkiewicz multiplier theorem and maximal regularity, Math. Z. 240 (2002), 311343.CrossRefGoogle Scholar
4.Arendt, W. and Bu, S., Operator-valued Fourier multiplier on periodic Besov spaces and applications, Proc. Edinb. Math. Soc. 47(2) (2004), 1533.CrossRefGoogle Scholar
5.Barbu, V. and Favini, A., Periodic problems for degenerate differential equations, Rend. Instit. Mat. Univ. Trieste (1997) 28(Supplement), 2957.Google Scholar
6.Bourgain, J., Some remarks on Banach spaces in which martingale differences sequences are unconditional, Ark. Mat. 21 (1983), 163168.CrossRefGoogle Scholar
7.Bu, S. and Fang, Y., Maximal regularity for integro-differential equation on periodic Triebel-Lizorkin spaces, Taiwan. J. Math. 12(2) (2008), 281292.CrossRefGoogle Scholar
8.Bu, S. and Kim, J. M., Operator-valued Fourier multipliers on periodic Triebel spaces, Acta Math. Sinica (Engl. Ser.) 21 (2005), 10491056.CrossRefGoogle Scholar
9.Burkholder, D. L., A geometrical condition that implies the existence of certain singular integrals on Banach-space-valued functions, in Proc. Conf. on Harmonic Analysis in Honor of Antoni Zygmund, Chicago, IL, 1981, pp. 270286 (Wadsworth, Belmont, CA, 1983).Google Scholar
10.Burkholder, D. L., Martingales and singular integrals in Banach spaces, in Handbook of the geometry of Banach spaces, Volume 1, pp. 233269 (North-Holland, Amsterdam, 2001).CrossRefGoogle Scholar
11.Burton, T. A. and Zhang, B., Periodic solutions of abstract differential equations with infinite delay, J. Diff. Eqns 90 (1991), 357396.CrossRefGoogle Scholar
12.Butzer, P. L. and Berens, H., Semi-groups of operators and approximation, Die Grundlehren der Mathematische Wissenschaften, Volume 145 (Springer, 1967).CrossRefGoogle Scholar
13.Denk, R., Hieber, M. and Pruss, J., R-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Memoirs of the American Mathematical Society, Volume 166 (American Mathematical Society, Providence, RI, 2003).Google Scholar
14.Favaron, A. and Favini, A., Maximal time regularity for degenerate evolution integro-differential equations, J. Evol. Eqns 10(2) (2010), 377412.CrossRefGoogle Scholar
15.Favini, A. and Yagi, A., Degenerate differential equations in Banach spaces, Pure and Applied Mathematics, Volume 215 (Dekker, New York, 1999).Google Scholar
16.Girardi, M. and Weis, L., Criteria for R-boundedness of operator families, Lecture Notes in Pure and Applied Mathematics, Volume 234, pp. 203221 (Dekker, New York, 2003).Google Scholar
17.Girardi, M. and Weis, L., Operator-valued Fourier multiplier theorems on Besov spaces, Math. Nachr. 251 (2003), 3451.CrossRefGoogle Scholar
18.Keyantuo, V. and Lizama, C., Fourier multipliers and integro-differential equations in Banach spaces, J. Lond. Math. Soc. 69(3) (2004), 737750.CrossRefGoogle Scholar
19.Keyantuo, V. and Lizama, C., Maximal regularity for a class of integro-differential equations with infinite delay in Banach spaces, Studia Math. 168(1) (2005), 2550.CrossRefGoogle Scholar
20.Keyantuo, V., Lizama, C. and Poblete, V., Periodic solutions of integro-differential equations in vector-valued function spaces, J. Diff. Eqns 246(3) (2009), 10071037.CrossRefGoogle Scholar
21.Lagnese, J., Boundary stabilization of thin plates (SIAM, Philadelphia, PA, 1989).CrossRefGoogle Scholar
22.Lizama, C. and Ponce, R., Periodic solutions of degenerate differential equations in vector-valued function spaces, Studia Math. 202 (2011), 4963.CrossRefGoogle Scholar
23.Prüss, J., Evolutionary integral equations and applications, Monographs in Mathematics, Volume 87 (Birkhäuser, Basel, 1993).CrossRefGoogle Scholar
24.Schmeisser, H. J. and Triebel, H., Topics in Fourier analysis and function spaces (Wiley, 1987).Google Scholar
25.Weis, L., A new approach to maximal Lp-regularity, Lecture Notes in Pure and Applied Mathematics, Volume 215, pp. 195214 (Marcel Dekker, New York, 2001).Google Scholar