Published online by Cambridge University Press: 17 June 2020
Let f be a holomorphic self-map of the unit ball in dimension 2, which does not have an interior fixed point. Suppose that f has a Wolff point p with the boundary dilatation coefficient equal to 1 and the non-tangential differential dfp = id. The local behaviours of f near p are quite diverse, and we give a detailed study in many typical cases. As a byproduct, we give a dynamical interpretation of the Burns–Krantz rigidity theorem. Note also that similar results hold on two-dimensional contractible smoothly bounded strongly pseudoconvex domains.