Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T13:56:20.842Z Has data issue: false hasContentIssue false

Local spectrum and subharmonicity

Published online by Cambridge University Press:  20 January 2009

B. Aupetit
Affiliation:
Départment de Mathématiques et de Statistique Université Laval Québec Qc Canada G1K 7P4
D. Drissi
Affiliation:
Department of Mathematics Faculty of Sciences Kuwait University P.O. Box 5969 Safat 13060, Kuwait
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Introducing the technique of subharmonic functions, we prove that the local spectrum Spu(λ)(T) is almost constant if u is an analytic family of vectors and if the spectrum of T is thin, a result which is similar to the finite-dimensional situation. We apply this result to improve a former result of C. Foiaş [7] on generalized scalar operators and results of C. Foiaş and F. -H. Vasilescu [8] on generalized commutators.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1996

References

REFERENCES

1. Aupetit, B., A primer on spectral theory (Springer-Verlag, 1991).CrossRefGoogle Scholar
2. Aupetit, B. and Drissi, D., Some spectral inequalities involving generalized scalar operators, Studia Math. 109 (1994), 5166.CrossRefGoogle Scholar
3. Brelot, M., Eléments de la théorie classique du otentiel (Centre de documentation universitaire, Paris, 1965).Google Scholar
4. Colojoară, I. and Foiaş, C., Theory of generalized spectral operators (Gordon and Breach, 1968).Google Scholar
5. Dunford, N., A survey of the theory of spectral operators, Bull. Amer. Math. Soc. 64 (1958), 217274.CrossRefGoogle Scholar
6. Erdelyi, I. and Lange, R., Spectral decompositions on Banach spaces (Lecture Notes in Mathematics, Springer-Verlag, 1977).CrossRefGoogle Scholar
7. Foiaş, C., Une application des distributions vectorielles à la théorie spectrale, Bull. Sci. Math. 84 (1960), 147158.Google Scholar
8. Foiaş, C. and Vasilescu, F. -H., On the spectral theory of commutators, J. Math. Anal. Appl. 31 (1970), 473486.CrossRefGoogle Scholar
9. Helms, L. L., Introduction to potential theory (Robert E. Krieger, 1975).Google Scholar
10. Laursen, K. B. and Neumann, M. M., Asymptomatic intertwinning and spectral inclusions on Banach spaces, Czech. Math. J., to appear.Google Scholar
11. Radjavi, H. and Rosenthal, P., Invariant subspaces (Springer-Verlag, 1973).CrossRefGoogle Scholar
12. Rudin, W., Real and complex analysis (McGraw-Hill, 1974).Google Scholar
13. Sun, S. L., The sum and product of decomposable operators (Chinese), Northeastern Math. J. 5(1) (1989), 105117.Google Scholar
14. Vasilescu, F. -H., Analytic operators and spectral decompositions, Indiana Univ. Math. J. 34 (1985), 705722.CrossRefGoogle Scholar
15. Vasilescu, F. -H., Analytic functional calculus and spectral decomposition (Editura Academiei, Bucharest and D. Reidel Publishing Co., Dordrecht, 1982).Google Scholar