Published online by Cambridge University Press: 20 January 2009
An elementary fact about ideal lattices of bounded distributive lattices is that they belong to the equational class ℬω of all distributive p-algebras (distributive lattices with pseudocomplementation). The lattice of equational subclasses of ℬω is known to be a chain
of type (ω+l, where ℬ0 is the class of Boolean algebras and ℬ1 is the class of Stone algebras. G. Grätzer in his book [7] asks after a characterisation of those bounded distributive lattices whose ideal lattice belongs to ℬ (n≧1). The answer to the problem for the case n = 0 is well known: the ideal lattice of a bounded lattice L is Boolean if and only if L is a finite Boolean algebra. D. Thomas [10] recently solved the problem for the case n = 1 utilising the order-topological duality theory for bounded distributive lattices and in [5] W. Bowen obtained another proof of Thomas's result via a construction of the dual space of the ideal lattice of a bounded distributive lattice from its dual space. In this paper we give a short, purely algebraic proof of Thomas's result and deduce from it necessary and sufficient conditions for the ideal lattice of a bounded distributive lattice to be a relative Stone algebra.