Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T06:38:50.505Z Has data issue: false hasContentIssue false

Invertible disjointness preserving operators

Published online by Cambridge University Press:  20 January 2009

C. B. Huijsmans
Affiliation:
Department of Mathematics, University of Leiden, P.O. Box 9512, 2300 RA Leiden, The Netherlands
B. De Pagter
Affiliation:
Faculty of Technical Mathematics and Computer Science, Delft University of Technology, P.O. Box 356, 2500 AJ Delft, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is shown that an invertible disjointness preserving operator from a uniformly complete vector lattice onto a normed vector lattice has a disjointness preserving inverse and is necessarily order bounded.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1994

References

REFERENCES

1.Abramovich, Y. A., Multiplicative representation of disjointness preserving operators, Indag. Math. 45 (1983), 265279.Google Scholar
2.Abramovich, Y. A., Veksler, A. I. and Koldunov, A. V., On operators preserving disjointness, Soviet Math. Dokl. 20 (1979), 10891093.Google Scholar
3.Aliprantis, C. D. and Burkinshaw, O., Positive Operators (Academic Press, Orlando, 1985).Google Scholar
4.Arendt, W., Spectral properties of Lamperti operators, Indiana Univ. Math. J. 32 (1983), 199215.Google Scholar
5.Bernau, S. J., Orthomorphisms of Archimedean vector lattices, Math. Proc. Cambridge Philos. Soc. 89 (1981), 119128.Google Scholar
6.Huijsmans, C. B. and Luxemburg, W. A. J. (eds.), Positive Operators and Semigroups on Banach Lattices (Kluwer, Dordrecht, 1992); also appeared in Acta Appl. Math. 27 (1992), 143–152.CrossRefGoogle Scholar
7.Huijsmans, C. B. and Wickstead, A. W., The inverse of band preserving and disjointness preserving operators, Indag. Math. 3 (N.S.) (1992), 179183.CrossRefGoogle Scholar
8.Jarosz, K., Automatic continuity of separating linear isomorphisms, Canad. Math. Bull. 33 (1990), 139144.Google Scholar
9.Luxemburg, W. A. J. and Zaanen, A. C., Riesz Spaces I (North-Holland, Amsterdam, 1971).Google Scholar
10.McPolin, P. T. N. and Wickstead, A. W., The order boundedness of band preserving operators on uniformly complete vector lattices. Math. Proc. Cambridge Philos. Soc. 97 (1985), 481487.Google Scholar
11.Meyer-Nieberg, P., Banach Lattices (Springer, Universitext, Berlin, 1991).CrossRefGoogle Scholar
12.Meyer, M., Le stabilisateur d'un espace vectoriel réticulé, C. R. Acad. Sci. Paris 283 (1976), 249250.Google Scholar
13.Meyer, M., Quelques propriétés des homomorphisms d'espaces vectoriels réticulés, Equipe d'Analyse Paris VI, preprint 131, 1979.Google Scholar
14.de Pagter, B., A note on disjointness preserving operators, Proc. Amer. Math. Soc. 90 (1984), 543549.Google Scholar
15.Schaefer, H. H., Banach lattices and Positive Operators (Springer, Ergebnisse 215 (Berlin, 1974).Google Scholar
16.Zaanen, A. C., Riesz Spaces II(North-Holland, Amsterdam, 1983).Google Scholar