Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T22:01:25.170Z Has data issue: false hasContentIssue false

Inversion of Colombeau generalized functions

Published online by Cambridge University Press:  21 March 2013

Evelina Erlacher*
Affiliation:
Institute for Statistics and Mathematics, Vienna University of Economics and Business, Augasse 2–6, 1090 Vienna, Austria ([email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We introduce different notions of invertibility for generalized functions in the sense of Colombeau. Several necessary conditions for (left, right) invertibility are derived, giving rise to the concepts of compactly asymptotic injectivity and surjectivity. We analyse the extent to which these properties are also sufficient to guarantee the existence of a (left, right) inverse of a generalized function. Finally, we establish several Inverse Function Theorems in this setting and study the relation to their classical counterparts.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2013

References

1.Abraham, R., Marsden, J. E. and Raţiu, T., Manifolds, tensor analysis, and applications (Addison-Wesley, Reading, MA, 1983).Google Scholar
2.Aragona, J. and Biagioni, H. A., Intrinsic definition of the Colombeau algebra of generalized functions, Analysis Math. 17 (1991), 75132.CrossRefGoogle Scholar
3.Aragona, J., Fernandez, R. and Juriaans, S. O., A discontinuous Colombeau differential calculus, Monatsh. Math. 144 (2005), 1329.CrossRefGoogle Scholar
4.Aragona, J., Fernandez, R., Juriaans, S. O. and Oberguggenberger, M., Differential calculus and integration of generalized functions over membranes, Monatsh. Math. 166 (2012), 118.CrossRefGoogle Scholar
5.Colombeau, J.-F., New generalized functions and multiplication of distributions, North-Holland Mathematics Studies, Volume 84 (North-Holland, Amsterdam, 1984).Google Scholar
6.Colombeau, J.-F., Elementary introduction to new generalized functions, North-Holland Mathematics Studies, Volume 113 (North-Holland, Amsterdam, 1985).Google Scholar
7.De Rham, G., Differentiable manifolds (Springer, 1984).CrossRefGoogle Scholar
8.Djapić, N., Kunzinger, M. and Pilipović, S., Symmetry group analysis of weak solutions, Proc. Lond. Math. Soc. 84 (2002), 686710.CrossRefGoogle Scholar
9.Erlacher, E., Local existence results in algebras of generalised functions, PhD thesis, University of Vienna (2007; available at www.mat.univie.ac.at/~diana/uploads/publication47.pdf).Google Scholar
10.Erlacher, E. and Grosser, M., Inversion of a 'discontinuous coordinate in general relativity, Applic. Analysis 90 (2011), 17071728.CrossRefGoogle Scholar
11.Gale, D. and Nikaidô, H., The Jacobian matrix and global univalence of mappings, Math. Annalen 159 (1965), 8193.CrossRefGoogle Scholar
12.Garetto, C. and Hörmann, G., On duality theory and pseudodifferential techniques for Colombeau algebras: generalized delta functionals, kernels and wave front sets, Bull. Classe Sci. Math. Nat. 31 (2006), 115136.CrossRefGoogle Scholar
13.Garetto, C., Hörmann, G. and Oberguggenberger, M., Generalized oscillatory integrals and Fourier integral operators, Proc. Edinb. Math. Soc. 52 (2009), 351386.CrossRefGoogle Scholar
14.Grosser, M., Kunzinger, M., Oberguggenberger, M. and Steinbauer, R., Geometric theory of generalized functions, Mathematics and Its Applications, Volume 537 (Kluwer Academic, Dordrecht, 2001).Google Scholar
15.Haller, S., Microlocal analysis of generalized pullbacks of Colombeau functions, Acta Appl. Math. 105 (2009), 83109.CrossRefGoogle Scholar
16.Hörmann, G., Hölder–Zygmund regularity in algebras of generalized functions, Z. Analysis Anwend. 23 (2004), 139165.CrossRefGoogle Scholar
17.Hörmann, G. and de Hoop, M. V., Microlocal analysis and global solutions of some hyperbolic equations with discontinuous coefficients, Acta Appl. Math. 67 (2001), 173224.CrossRefGoogle Scholar
18.Konjik, S. and Kunzinger, M., Generalized group actions in a global setting, J. Math. Analysis Applic. 322 (2006), 420436.CrossRefGoogle Scholar
19.Kunzinger, M., Generalized functions valued in a smooth manifold, Monatsh. Math. 137 (2002), 3149.CrossRefGoogle Scholar
20.Kunzinger, M. and Oberguggenberger, M., Group analysis of differential equations and generalized functions, SIAM J. Math. Analysis 31 (2000), 11921213.CrossRefGoogle Scholar
21.Kunzinger, M. and Steinbauer, R., A note on the Penrose junction conditions, Class. Quant. Grav. 16 (1999), 12551264.CrossRefGoogle Scholar
22.Kunzinger, M. and Steinbauer, R., Generalized pseudo-Riemannian geometry, Trans. Am. Math. Soc. 354 (2002), 41794199.CrossRefGoogle Scholar
23.Kunzinger, M., Oberguggenberger, M., Steinbauer, R. and Vickers, J., Generalized flows and singular ODEs on differentiable manifolds, Acta Appl. Math. 80 (2004), 221241.CrossRefGoogle Scholar
24.Kunzinger, M., Steinbauer, R. and Vickers, J., Intrinsic characterization of manifold-valued generalized functions, Proc. Lond. Math. Soc. 87 (2003), 451470.CrossRefGoogle Scholar
25.Madsen, I. and Tornehave, J., From calculus to cohomology (Cambridge University Press, 1997).Google Scholar
26.Nedeljkov, M., Pilipović, S. and Scarpalezos, D., The linear theory of colombeau generalized functions, Pitman Research Notes in Mathematics, Volume 385 (Longman, Harlow, 1998).Google Scholar
27.Oberguggenberger, M., Multiplication of distributions and applications to partial differ-ential equations, Pitman Research Notes in Mathematics, Volume 259 (Longman, Harlow, 1992).Google Scholar
28.Penrose, R., Twistor quantization and curved space-time, Int. J. Theor. Phys. 1 (1968), 6199.CrossRefGoogle Scholar