Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T17:30:16.852Z Has data issue: false hasContentIssue false

Infinite Coxeter groups are virtually indicarle

Published online by Cambridge University Press:  20 January 2009

D. Cooper
Affiliation:
Department of Mathematics, University of California, Santa Barbara, CA 93106, U.S.A.
D. D. Long
Affiliation:
Department of Mathematics, University of California, Santa Barbara, CA 93106, U.S.A.
A. W. Reid
Affiliation:
Department of Mathematics, University of Texas, Austin, TX 78712, U.S.A.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove that any infinite Coxeter group has a finite index subgroup which surjects ℤ.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1998

References

REFERENCES

1.Bass, H., Milnor, J. and Serre, J-P., Solution to the Congruence Subgroup Problem for SLn(n ≥ 3) and Sp2n(n ≥ 2), Publ I. H. E. S. 33 (1967), 421499.Google Scholar
2.Brown, K., Buildings (Springer-Verlag, 1989).CrossRefGoogle Scholar
3.Bozejko, M., Januszkiewicz, T. and Spatzier, R., Infinite Coxeter groups do not have Kazhdan's property. J. Operator Theory 19 (1988), 6368.Google Scholar
4.Davis, M., The cohomology of a Coxeter group with group ring coefficients, preprint.Google Scholar
5.de la Harpe, P. and Valette, A., la propriété (T) de Kazhdan pour les groupes localement compacts, Astérisque 175 (1989).Google Scholar
6.Gonciulea, C., Infinite Coxeter groups virtually surject onto ℤ, Comment. Math. Helv. 72 (1997), 257265.CrossRefGoogle Scholar
7.Haefliger, A., Complexes of Groups and Orbihedra, in Group Theory from a Geometrical Viewpoint (World Scientific, 1991).Google Scholar
8.Hempel, J., Orientation reversing involutions and the first betti number of finite coverings of 3-manifolds, Invent. Math. 67 (1982), 133142.CrossRefGoogle Scholar
9.Long, D. D., Immersions and embeddings of totally geodesic surfaces, Bull. London Math. Soc. 19 (1987), 481484.CrossRefGoogle Scholar
10.Long, D. D. and Niblo, G., Subgroup separability and 3-manifold groups, Math. Z. 207 (1991), 209215.CrossRefGoogle Scholar
11.Niblo, G., Finding splittings of groups and three manifolds, Bull. London Math. Soc. 27 (1995), 567574.CrossRefGoogle Scholar
12.Margulis, G. A., Discrete Subgroups of Semi-simple Lie Groups (Ergebnisse der Mathematik und ihr Grenzgebeite, Springer-Verlag, 1991).CrossRefGoogle Scholar