Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-16T17:23:10.055Z Has data issue: false hasContentIssue false

Improved A1A and Related Estimates for Commutators of Rough Singular Integrals

Published online by Cambridge University Press:  06 August 2018

Israel P. Rivera-Ríos*
Affiliation:
Universidad del País Vasco/Euskal Herriko Unibertsitatea, Departamento de Matematicas/Matematika saila, Apdo. 644, 48080 Bilbao, Spain BCAM–Basque Center for Applied Mathematics, Alameda de Mazarredo 14, 48009 Bilbao, Spain ([email protected])

Abstract

An A1A estimate, improving on a previous result for [b, TΩ] with $\Omega \in L^{infty}({\open S}^{n - 1})$ and b∈BMO is obtained. A new result in terms of the A constant and the one supremum AqAexp constant is also proved, providing a counterpart for commutators of the result obtained by Li. Both of the preceding results rely upon a sparse domination result in terms of bilinear forms, which is established using techniques from Lerner.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Caldarelli, M., Lerner, A. K. and Ombrosi, S., On a counterexample related to weighted weak type estimates for singular integrals, Proc. Amer. Math. Soc. 145(7) (2017), 30053012.Google Scholar
2Coifman, R. R., Rochberg, R. and Weiss, G., Factorization theorems for Hardy spaces in several variables, Ann. Math. 103(3) (1976), 611635.Google Scholar
3Conde-Alonso, J. M., Culiuc, A., Di Plinio, F. and Ou, Y., A sparse domination principle for rough singular integrals, Anal. PDE 10(5) (2017), 12551284.Google Scholar
4Cruz-Uribe, D., Martell, J. M. and Pérez, C., Weights, extrapolation and the theory of Rubio de Francia, Operator Theory: Advances and Applications, Volume 215 (Birkhäuser/Springer Basel AG, Basel, 2011).Google Scholar
5Duoandikoetxea, J., Extrapolation of weights revisited: new proofs and sharp bounds, J. Funct. Anal. 260 ( 2015), 18861901.Google Scholar
6García-Cuerva, J. and de Francia, J. L. Rubio, Weighted norm inequalities and related topics, North-Holland Mathematics Studies, Volume 116. Notas de Matemática (Mathematical Notes) Volume 104 (North-Holland Publishing, Amsterdam, 1985).Google Scholar
7Grafakos, L., Modern Fourier analysis, 3rd edn. Graduate Texts in Mathematics, Volume 250 (Springer, New York, 2014).Google Scholar
8Hytönen, T. P. and Pérez, C., Sharp weighted bounds involving A , Anal. PDE 6(4) (2013), 777818.Google Scholar
9Hytönen, T. P., Pérez, C. and Rela, E., Sharp reverse Hölder property for A weights on spaces of homogeneous type, J. Funct. Anal. 263(12) (2012), 38833899.Google Scholar
10Hytönen, T. P., Roncal, L. and Tapiola, O., Quantitative weighted estimates for rough homogeneous singular integrals, Israel J. Math. 218(1) (2017), 133164.Google Scholar
11Ibañez-Firnkorn, G. H. and Rivera-Ríos, I. P., Sparse and weighted estimates for generalized Hörmander operators and commutators, preprint. Available at https://arxiv.org/abs/1704.01018Google Scholar
12Lerner, A. K., On pointwise estimates involving sparse operators, N. Y. J. Math. 22 ( 2016), 341349.Google Scholar
13Lerner, A. K., A weak type estimate for rough singular integrals, preprint. Available at https://arxiv.org/abs/1705.07397, to appear in Revista Mat. Iberoamericana.Google Scholar
14Lerner, A. K. and Moen, K., Mixed A pA estimates with one supremum, Studia Math. 219(3) (2013), 247267.Google Scholar
15Lerner, A. K. and Nazarov, F., Intuitive dyadic calculus: the basics, preprint. Available at http://arxiv.org/abs/1508.05639, to appear in Expo. Math.Google Scholar
16Lerner, A. K., Ombrosi, S. and Pérez, C., Sharp A 1 bounds for Calderón–Zygmund operators and the relationship with a problem of Muckenhoupt and Wheeden, Int. Math. Res. Not. IMRN 2008, rnm161.Google Scholar
17Lerner, A. K., Ombrosi, S. and Pérez, C., A 1 bounds for Calderón–Zygmund operators related to a problem of Muckenhoupt and Wheeden, Math. Res. Lett. 16(1) (2009), 149156.Google Scholar
18Lerner, A. K., Ombrosi, S. and Rivera-Ríos, I. P., On pointwise and weighted estimates for commutators of Calderón–Zygmund operators, Adv. Math. 319 ( 2017), 153181.Google Scholar
19Li, K., Sharp weighted estimates involving one supremum, C. R. Math. Acad. Sci. Paris 355(8) (2017), 906909.Google Scholar
20Li, K., Pérez, C., Rivera-Ríos, I. P. and Roncal, L., Weighted norm inequalities for rough singular integral operators, preprint. Available at https://arxiv.org/abs/1701.05170Google Scholar
21Pérez, C., On sufficient conditions for the boundedness of the Hardy–Littlewood maximal operator between weighted L p-spaces with different weights, Proc. London Math. Soc. (3) 71(1) (1995), 135157.Google Scholar
22Pérez, C., Rivera-Ríos, I. P. and Roncal, L., A 1 theory of weights for rough homogeneous singular integrals and commutators, preprint. Available at https://arxiv.org/abs/1607.06432, to appear in Ann. Sci. Scuola Norm. Sup. (Scienze).Google Scholar
23Pick, L., Kufner, A., John, O. and Fuc̆ik, S., Function spaces, Second revised and extended edition, Volume 1, De Gruyter Series in Nonlinear Analysis and Applications, Volume 14 (Walter de Gruyter and Co., Berlin, 2013).Google Scholar
24Ortiz-Caraballo, C., Quadratic A 1 bounds for commutators of singular integrals with BMO functions, Indiana Univ. Math. J. 60(6) (2011), 21072130.Google Scholar
25Rao, M. M. and Ren, Z. D., Theory of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, Volume 146 (Marcel Dekker, New York, 1991).Google Scholar
26Seeger, A., Singular integral operators with rough convolution kernels, J. Amer. Math. Soc. 9(1) (1996), 95105.Google Scholar