Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-16T19:19:23.052Z Has data issue: false hasContentIssue false

Hodge Theory on Generalized Normal Crossing Varieties

Published online by Cambridge University Press:  17 December 2013

Yujiro Kawamata*
Affiliation:
Graduate School of Mathematical Sciences, University of Tokyo, Komaba, Meguro, Tokyo 153-8914, Japan ([email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We generalize some results in Hodge theory to generalized normal crossing varieties.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2014 

References

1.Abramovich, D. and Karu, K., Weak semistable reduction in characteristic 0, Invent. Math. 139(2) (2000), 241273.Google Scholar
2.Deligne, P., Theoreme de Lefschetz et criteres de degenerescence de suites spectrales, Publ. Math. IHES 35 (1968), 259278.Google Scholar
3.Deligne, P., Theorie de Hodge, II, Publ. Math. IHES 40 (1971), 557.Google Scholar
4.Deligne, P., Theorie de Hodge, III, Publ. Math. IHES 44 (1974), 577.Google Scholar
5.Bois, P. Du, Complexe de de Rham filtre d'une variete singuliere, Bull. Soc. Math. France 109(1) (1981), 4181.Google Scholar
6.Fujino, O., On Kawamata's theorem, in Classification of algebraic varieties, European Mathematical Society Series of Congress Reports, pp. 305315 (European Mathematical Society, Zürich, 2011).Google Scholar
7.Gelfand, S. I. and Manin, Y. I., Methods of homological algebra, Springer Monographs in Mathematics (Springer, 2003).Google Scholar
8.Hironaka, H., Resolution of singularities of an algebraic variety over a field of characteristic zero, I, Annals Math. 79 (1964), 109203.Google Scholar
9.Hironaka, H., Resolution of singularities of an algebraic variety over a field of characteristic zero, II, Annals Math. 79 (1964), 205326.Google Scholar
10.Kawamata, Y., Characterization of abelian varieties, Compositio Math. 43 (1981), 253276.Google Scholar
11.Kawamata, Y., Pluricanonical systems on minimal algebraic varieties, Invent. Math. 79 (1985), 567588.Google Scholar
12.Kawamata, Y., Semipositivity theorem for reducible algebraic fiber spaces, Q. J. Pure Appl. Math. 7(4) (2011), 14271447.Google Scholar
13.Kawamata, Y., Variation of mixed Hodge structures and the positivity for algebraic fiber spaces, Adv. Stud. Pure Math. (in press).Google Scholar
14.Kollár, J., Higher direct images of dualizing sheaves, I, Annals Math. 123(1) (1986), 1142.Google Scholar
15.Kollár, J., Higher direct images of dualizing sheaves, II, Annals Math. 124(1) (1986), 171202.Google Scholar
16.Nakayama, N., Hodge filtrations and the higher direct images of canonical sheaves, Invent. Math. 85(1) (1986), 217221.CrossRefGoogle Scholar
17.Schmid, W., Variation of Hodge structure: the singularities of the period mapping, Invent. Math. 22 (1973), 211319.Google Scholar