Published online by Cambridge University Press: 20 January 2009
Let A be a commutative Banach algebra with identity 1 over the complex field C, and let d0 be a character on A. We recall that a (higher) point derivation of order q on A at d0 is a sequence d1, …, dq of linear functionals on A such that the identities
hold for each choice of f and g in A and k in {1, …, q}. A point derivation of infinite order is an infinite sequence {dk} of linear functionals such that (1.1) holds for all k. A point derivation is continuous if each dk is continuous, totally discontinuous if dk is discontinuous for each k≧1, and degenerate if d1 = 0.