Hostname: page-component-f554764f5-wjqwx Total loading time: 0 Render date: 2025-04-09T12:11:40.269Z Has data issue: false hasContentIssue false

Hardy and Rellich Inequalities with Bessel Pairs

Published online by Cambridge University Press:  31 March 2025

Michael Ruzhansky
Affiliation:
Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Ghent, Belgium ([email protected]) School of Mathematical Sciences, Queen Mary University of London, London, UK ([email protected])
Bolys Sabitbek
Affiliation:
School of Mathematical Sciences, Queen Mary University of London, London, UK ([email protected])
Rights & Permissions [Opens in a new window]

Abstract

In this paper, we establish suitable characterisations for a pair of functions $(W(x),H(x))$ on a bounded, connected domain $\Omega \subset \mathbb{R}^n$ in order to have the following Hardy inequality:

\begin{equation*}\int_{\Omega} W(x) |\nabla u|_A^2 dx \geq \int_{\Omega} |\nabla d|^2_AH(x)|u|^2 dx, \,\,\, u \in C^{1}_0(\Omega),\end{equation*}

where d(x) is a suitable quasi-norm (gauge), $|\xi|^2_A = \langle A(x)\xi, \xi \rangle$ for $\xi \in \mathbb{R}^n$ and A(x) is an n × n symmetric, uniformly positive definite matrix defined on a bounded domain $\Omega \subset \mathbb{R}^n$. We also give its Lp analogue. As a consequence, we present examples for a standard Laplacian on $\mathbb{R}^n$, Baouendi–Grushin operator, and sub-Laplacians on the Heisenberg group, the Engel group and the Cartan group. Those kind of characterisations for a pair of functions $(W(x),H(x))$ are obtained also for the Rellich inequality. These results answer the open problems of Ghoussoub-Moradifam [16].

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2025. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society.

1. Introduction

In the work [Reference Ghoussoub and Moradifam17], Ghoussoub and Moradifam gave necessary and sufficient conditions for a Bessel pair of positive radial functions W(x) and H(x) on a ball B of radius R in $\mathbb{R}^n$, so that one has the Hardy inequality for all functions $u \in C^{\infty}_0(B)$:

\begin{equation*} \int_{B} W(x) |\nabla u|^2 dx \geq \int_{B} H(x) |u|^2 dx, \end{equation*}

and the Hardy–Rellich inequality for all functions $u \in C^{\infty}_0(B)$:

\begin{equation*} \int_{B} W(x)|\Delta u|^2 dx \geq \int_{B} H(x)|\nabla u|^2 dx +(n-1)\int_{B} \left( \frac{W(x)}{|x|^2}-\frac{W_r(|x|)}{|x|} \right)|\nabla u|^2 dx. \end{equation*}

The characterisation of pairs of functions W(x) and H(x) made a very interesting connection between Hardy type inequalities and the oscillatory behaviour of ordinary differential equations. Choosing suitable Bessel pairs $(W(x),H(x))$ allows one to improve, extend, and unify many results about Hardy and Hardy–Rellich inequalities that were established by Caffarelli et al. [Reference Caffarelli, Kohn and Nirenberg11], Brezis and Vazquez [Reference Brezis and Vazquez10], Wang and Willem [Reference Wang and Willem35], Adimurthi et al. [Reference Adimurthi, Chaudhuri and Ramaswamy1], and other authors. In the book [Reference Ghoussoub and Moradifam16], Ghoussoub and Moradifam posed two questions:

  • Develop suitable characterisations for a pair of functions $(W(x),H(x))$ in order to have the following inequality:

    \begin{equation*} \int_{\Omega} W(x) |\nabla u|_A^2 dx \geq \int_{\Omega} H(x)|u|^2 dx, \,\,\, u \in C^{1}_0(\Omega), \end{equation*}

    where $|\xi|^2_A = \langle A(x)\xi, \xi \rangle$ for $\xi \in \mathbb{R}^n$ and A(x) is an n × n symmetric, uniformly positive definite matrix defined on a bounded domain $\Omega \subset \mathbb{R}^n$.

  • Determine a necessary and sufficient condition for a Bessel pair $(W(x),H(x))$ in order to the Rellich inequality to hold:

    \begin{equation*} \int_{\Omega} W(x) |\Delta u|^2 dx \geq \int_{\Omega} H(x)|u|^2 dx, \,\,\, u \in C^{\infty}_0(\Omega). \end{equation*}

The aim of this paper is to give suitable characterisations for a Bessel pair of positive radial functions W(x) and H(x) for Hardy and Rellich inequalities on a bounded, connected domain $\Omega \subset \mathbb{R}^n$ that answers the open problems of Ghoussoub-Moradifam [Reference Ghoussoub and Moradifam16]. We prove Hardy and Rellich inequalities expressing conditions for Bessel pairs in terms of ordinary differential equations associated with the positive weight functions W(x) and H(x). Our approach relies on the first and second order Picone identities. This suggested approach seems very effective, allowing us to recover almost all well-known Hardy and Rellich type inequalities. It is also an extension of the method of Allegretto-Huang [Reference Allegretto and Huang3, Theorem 2.1], by adding the positive weight function W(x). A similar approach was used by the authors [Reference Ruzhansky, Sabitbek and Suragan26] to establish Hardy and Rellich type inequalities for general (real-valued) vector fields with boundary terms. Recently, in [Reference Cazacu12], Cazacu called this method (but without the function W(x)) as the Method of Super-solutions in Hardy and Rellich inequalities that was adopted from Davies [Reference Davies14].

This characterisation of Bessel pairs builds an interesting bridge between Hardy (Rellich) type inequalities and ordinary differential equations. In particular, we can extend and improve many results for Hardy and Rellich type inequalities. Let us briefly recall several types of Hardy inequalities that can be recovered:

  1. I. The classical Hardy inequality for $n\geq 3$ on a bounded domain $\Omega \subset \mathbb{R}^n$ asserts that

    \begin{equation*} \int_{\Omega} |\nabla u|^2 dx \geq \left(\frac{n-2}{2}\right)^2 \int_{\Omega} \frac{|u|^2}{|x|^2} dx,\,\,\, u \in C^1_0(\Omega), \end{equation*}

    where the constant is optimal and not attained. This version of Hardy inequality was investigated by many authors see [Reference Davies14, Reference Goldstein, Kombe and Yener18, Reference Kufner and Opic20, Reference Ruzhansky and Suragan27] and the references therein.

  2. II. The geometric Hardy inequality for any bounded convex domain $\Omega \subset \mathbb{R}^n$ with smooth boundary asserts that

    \begin{equation*} \int_{\Omega} |\nabla u|^2 dx \geq \frac{1}{4} \int_{\Omega} \frac{|u|^2}{\delta^2(x)} dx,\,\,\, u \in C^1_0(\Omega), \end{equation*}

    where $\delta(x):= dist(x,\partial \Omega)$ is the Euclidean distance to boundary $\partial \Omega$ and the constant is also optimal and not attained. There is a number of studies related to this subject, see e.g. [Reference Ancona4Reference Avkhadiev and Wirths6, Reference Davies14, Reference Kufner and Opic20, Reference Maz’ya22, Reference Ruzhansky, Sabitbek and Suragan31].

  3. III. The multipolar Hardy inequality on a bounded domain $\Omega \subset \mathbb{R}^n$ asserts that:

    \begin{equation*} \int_{\Omega} |\nabla u|^2 dx \geq C \sum_{i=1}^k\int_{\Omega} \frac{|u|^2}{|x-a_i|^2} dx,\,\,\, u \in C^1_0(\Omega), \end{equation*}

    where k is the number of poles. This type of inequalities was studied by Felli-Terracini [Reference Felli and Terracini15], Bosi-Dolbeault-Esteban [Reference Bosi, Dolbeault and Esteban9] and Cacazu-Zuazua [Reference Cazacu and Zuazua13].

In this study, we have established the following significant results:

1. Hardy inequality with Bessel pairs: For $1 \lt p \lt Q$, we demonstrate that the Hardy inequality:

\begin{equation*} \int_{\Omega} W(x) |\nabla u|^p_A dx \geq \int_{\Omega}|\nabla d|^p_A H(x) |u|^p dx, \end{equation*}

holds true for all complex-valued functions $u \in C^1_0(\Omega)$, provided that the positive functions W(x) and H(x) satisfy the following conditions:

\begin{equation*} \int_{r_0}^{\infty} s^{Q-1}H(s) ds \lt \infty, \,\, \text{and} \,\, \,\, \phi(r) = 2 \int_{r}^{\infty} s^{Q-1}H(s) ds \lt \infty \,\,\, \text{for} \,\,\, r\geq r_0, \end{equation*}
(1.1)\begin{equation} \int_{r_0}^{\infty} \left( \frac{\phi(s)}{s^{Q-1}W(s)}\right)^{\frac{1}{p-1}} ds \leq \frac{1}{2(p-1)} \,\,\, \text{for some} \,\,\, r_0 \gt 0, \end{equation}

where d(x) is a quasi-norm (see Theorem 2.1).

2. Rellich inequality with Bessel pairs: For $1 \lt p \lt n$, we have established that the Rellich inequality:

\begin{equation*} \int_{\Omega} W(x) |\Delta |u||^p dx \geq \int_{\Omega} H(x) |u|^p dx, \end{equation*}

is proven to hold for all complex-valued functions $u \in C^2_0(\Omega)$. The necessary condition for this is the existence of a positive function $v\in C^{2}(\Omega)$ satisfying:

\begin{equation*} \Delta (W(x) |\Delta v|^{p-2}\Delta v) \geq H(x) v^{p-1}, \end{equation*}

with the positive functions W(x) and H(x) being such that $-\Delta v \gt 0$ almost everywhere in Ω (see Theorem 3.1).

This paper is organised as follows: Section 2 begins by presenting present our main result regarding the weighted Hardy inequality, as detailed in Theorem 2.1. We discuss the preliminaries, focusing on the existence of non-negative solutions to the quasilinear second-order differential equation. This discussion is crucial as it lays the foundation for understanding the characterisation of Bessel pairs W(x) and H(x). Also, we provide examples in various settings, including the Euclidean Space, Heisenberg group, Engel group, and Cartan group. In $\S$ 3, we prove the weighted Rellich inequality by establishing the necessary and sufficient conditions for the Bessel pair W(x) and H(x). Moreover, some particular cases are discussed.

2. Hardy inequalities with Bessel pairs

Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with smooth boundary. Define

(2.1)\begin{equation} \mathcal{L}_{p,A} f = - \sum_{i,j=1}^n \frac{\partial}{\partial {x_j}} \left( a_{ij}(x)|\nabla f|^{p-2}_A \frac{\partial f}{\partial x_j} \right), \end{equation}

and

\begin{equation*} |\nabla f|^2_A = \sum_{i,j=1}^n a_{ij}(x) \frac{\partial f}{\partial x_i} \frac{\partial f}{\partial x_j}, \end{equation*}

where $A(x)=(a_{ij}(x))$ is an n × n symmetric, uniformly positive definite matrix with smooth coefficients defined on Ω.

Let $\Phi_p$ be a constant multiple of the fundamental solution (e.g. [Reference Boccardo and Galloutet7, Reference Kilpelainen and Maly21]) for $\mathcal{L}_{p,A}$ that solves the equation:

\begin{align*} \mathcal{L}_{p,A} \Phi_p(x) &= 0, \,\,\, x \neq 0. \end{align*}

From $\Phi_p$, we are able to define the quasi-norm:

(2.2)\begin{equation} d(x) := \left\{\begin{matrix} \Phi_p(x)^{\frac{p-1}{p-Q}}, & \text{for} \,\,\, x \neq 0,\\ 0,& \text{for} \,\,\, x = 0, \end{matrix}\right. \end{equation}

where Q is the appropriate homogeneous dimension and $1 \lt p \lt Q$.

Define

(2.3)\begin{equation} \Psi_{\mathcal{L}_A}(x) := |\nabla d|^2_A(x), \end{equation}

for x ≠ 0. The function $\Psi_{\mathcal{L}_A}(x)$ can be calculated for the explicit form of the quasi-norm d(x). For example:

  • In the Euclidean setting, when $\mathcal{L}_A= \Delta$ is the standard Laplace operator, then $\Psi_{\Delta}(x) =1$.

  • In the Heisenberg group, when $\mathcal{L}_A= \mathcal{L}_{\mathbb{H}}$ is the sub-Laplacian and the quasi-norm ( $\mathcal{L}$-gauge) $d_{\mathbb{H}}(x)$, then $\Psi_{\mathcal{L}_{\mathbb{H}}}(x) = |x'|^2d_{\mathbb{H}}^{-2}$.

  • For Baouendi–Grushin operator, when $\mathcal{L}_A= \mathcal{L}_{\gamma}$ is the Baouendi–Grushin operator and $d_{\gamma}(x)$ is associated the quasi-norm, then $\Psi_{\mathcal{L}_{\gamma}}(x) =|\xi|^{2\gamma}d_{\gamma}^{-2\gamma}$ where $x = (\xi,\zeta) \in \mathbb{R}^k\times \mathbb{R}^l$ and γ > 0.

In the stratified Lie groups, we shall remark that the function $\Psi_{\mathcal{L}_A}(x)$ is δλ-homogeneous degree of zero and translation invariant (i.e. $\Psi_{\mathcal{L}}(\alpha \circ x, \alpha \circ y)= \Psi_{\mathcal{L}}(x,y)$ for $x,y \in \mathbb{G}$ with xy). Furthermore, the function $\Psi_{\mathcal{L}_A}(x)$ is the kernel of mean volume formulas (see more [Reference Bonfiglioli, Lanconelli and Uguzzoni8, Definition 5.5.1]).

The following theorem characterises the relation between W(x) and H(x) in order to obtain the weighted Hardy inequality:

Theorem 2.1. Let Ω be a bounded domain in $\mathbb{R}^n$. Let W(x) and H(x) be positive radially symmetric functions. Let $1 \lt p \lt Q$. Let d(x) be as in (2.2). Then, the inequality

(2.4)\begin{equation} \int_{\Omega} W(x) |\nabla u|^p_A dx \geq \int_{\Omega}|\nabla d|^p_A H(x) |u|^p dx, \end{equation}

holds for all complex-valued functions $u \in C^1_0(\Omega)$ provided that the following conditions hold:

(2.5)\begin{equation} \int_{r_0}^{\infty} s^{Q-1}H(s) ds \lt \infty, \,\, \text{and} \,\, \,\, \phi(r) = 2 \int_{r}^{\infty} s^{Q-1}H(s) ds \lt \infty \,\,\, \text{for} \,\,\, r\geq r_0, \end{equation}
(2.6)\begin{equation} \int_{r_0}^{\infty} \left( \frac{\phi(s)}{s^{Q-1}W(s)}\right)^{\frac{1}{p-1}} ds \leq \frac{1}{2(p-1)} \,\,\, \text{for some} \,\,\, r_0 \gt 0. \end{equation}

Remark 2.2. Note that

In order to prove Theorem 2.1, we need two ingredients:

  1. (i) The non-negative solution of the following equation

    (2.7)\begin{equation} \sum_{i,j=1}^n \frac{\partial }{\partial x_j} \left( W(|x|) |\nabla v|^{p-2}_A a_{ij}(x) \frac{\partial v}{\partial x_i} \right) + |\nabla d|^p_AH(|x|) v^{p-1} =0, \end{equation}
  2. (ii) The (first-order) Picone identity with A(x) which is an n × n symmetric, uniformly positive definite matrix defined on Ω. Lemma 2.4 is similar to the standard Picone identity obtained by Allegretto-Huang [Reference Allegretto and Huang3] and the authors [Reference Ruzhansky, Sabitbek and Suragan26].

Let us start by transforming Equation (2.7) into a quasilinear second-order differential equation:

(2.8)\begin{equation} ( r^{Q-1} W(r) |v'(r)|^{p-2}v'(r))' + r^{Q-1}H(r) |v(r)|^{p-2}v(r) =0, \end{equation}

here the notation $' = \partial_{r}$ denotes the derivative with respect to r, and we define $r:=d(x)$. The next theorem provides an explicit existence criterion of positive solution for ordinary differential Equation (2.8) which is proved by Agarwal-Bohner-Li [Reference Agarwal, Bohner and Li2, Theorem 4.6.13]:

Theorem 2.3. (Agarwal-Bohner-Li [Reference Agarwal, Bohner and Li2])

Let $a:[r_0, \infty) \rightarrow (0,\infty)$ and $b:[r_0, \infty) \rightarrow (0,\infty)$ be continuous functions with $b(r) \neq 0$. Suppose that

\begin{equation*} \int_{r_0}^{\infty} b(s) ds \lt \infty, \,\, \text{and} \,\, \,\, \phi(r) = 2 \int_{r}^{\infty} b(s)ds \lt \infty \,\,\, \text{for} \,\,\, r\geq r_0. \end{equation*}

Suppose further that

(2.9)\begin{equation} \int_{r_0}^{\infty} \left( \frac{\phi(s)}{a(s)}\right)^{\frac{1}{p-1}} ds \leq \frac{1}{2(p-1)}. \end{equation}

Then, there exists a non-negative solution to the following equation:

(2.10)\begin{equation} (a(r) [y'(r)]^{p-1})' + b(r)[y(r)]^{p-1} =0 \,\,\, \text{for} \,\,\, r\geq r_0. \end{equation}

This transformation is based on the premise that W(x), H(x), and v(x) are positive radially symmetric functions. Let us rewrite the first term of (2.7) in terms of the radial derivative. First note that for $i,j=1,\ldots,n$, we have

(2.11)\begin{align} \frac{\partial r}{\partial x_i} &= \left(\frac{p-1}{p-Q}\right) \Phi_p^{\frac{p-1}{p-Q}-1} \frac{\partial \Phi_p}{\partial x_i}, \end{align}
(2.12)\begin{align} \frac{\partial r}{\partial x_j} \frac{\partial r}{\partial x_i} &= \left(\frac{p-1}{p-Q}\right)^2 \Phi_p^{2\frac{p-1}{p-Q}-2} \frac{\partial \Phi_p}{\partial x_i}\frac{\partial \Phi_p}{\partial x_j}, \end{align}
(2.13)\begin{align} \frac{\partial^2 r}{\partial x_i \partial x_j} &= \left(\frac{p-1}{p-Q}\right) \Phi_p^{\frac{p-1}{p-Q}-1} \frac{\partial^2 \Phi_p}{\partial x_i\partial x_j} + \frac{(p-1)(Q-1)}{(p-Q)^2} \Phi_p^{\frac{p-1}{p-Q}-2} \frac{\partial \Phi_p}{\partial x_i}\frac{\partial \Phi_p}{\partial x_j}\\ &= \left(\frac{p-1}{p-Q}\right) \Phi_p^{\frac{p-1}{p-Q}-1} \frac{\partial^2 \Phi_p}{\partial x_i\partial x_j} + \left(\frac{Q-1}{p-1}\right)\Phi_p^{-\frac{p-1}{p-Q}}\frac{\partial r}{\partial x_j} \frac{\partial r}{\partial x_i}. \nonumber \end{align}

Then

\begin{align*} \frac{\partial v}{\partial x_i} = v' \frac{\partial r}{\partial x_i}, \,\,\, \text{and} \,\,\, \frac{\partial^2 v}{\partial x_i \partial x_j} = \frac{\partial r}{\partial x_i}\frac{\partial r}{\partial x_j} v'' + \frac{\partial^2 r }{\partial x_i \partial x_j} v'. \end{align*}

Since $\Phi_p = r^{\frac{p-Q}{p-1}}$, we thus have

(2.14)\begin{align} |\nabla r|^{p-2}_A &=\left( \frac{p-1}{p-Q}\right)^{p-2} |\nabla \Phi_p|_A^{p-2} r^{\frac{(Q-1)(p-2)}{p-1}}, \end{align}
(2.15)\begin{align} |\nabla v|^{p-2}_A &=|\nabla r|^{p-2}_A ( v')^{p-2}, \end{align}
(2.16)\begin{align} \frac{\partial |\nabla v|^{p-2}_A}{\partial x_j}& = \frac{(Q-1)(p-2)}{(p-1)r}|\nabla r|^{p-2}_A (v')^{p-2} \frac{\partial r}{\partial x_j} + (p-2)|\nabla r|^{p-2}_A (v')^{p-3} v'' \frac{\partial r}{\partial x_j} \\ & +\left( \frac{p-1}{p-Q}\right)^{p-2} \frac{\partial |\nabla \Phi_p|_A^{p-2}}{\partial x_j}r^{\frac{(Q-1)(p-2)}{p-1}}(v')^{p-2}.\nonumber \end{align}

Using above expressions, a straightforward computation gives:

\begin{align*} &\frac{\partial}{\partial {x_j}} \left( W a_{ij}(x)|\nabla v|^{p-2}_A \frac{\partial v}{\partial x_i} \right) = W a_{ij}(x)|\nabla v|^{p-2}_A \frac{\partial^2 v}{\partial x_i\partial x_j} \\ & + a_{ij}(x) |\nabla v|^{p-2}_A \frac{\partial W}{\partial x_j}\frac{\partial v}{\partial x_i} + W |\nabla v|^{p-2}_A \frac{\partial a_{ij}(x)}{\partial x_j}\frac{\partial v}{\partial x_i} + a_{ij}(x)W\frac{\partial |\nabla v|^{p-2}_A }{\partial x_j} \frac{\partial v}{\partial x_i}, \end{align*}
\begin{align*} &= W |\nabla r|^{p-2}_A ( v')^{p-2} v''\underbrace{a_{ij}(x) \frac{\partial r}{\partial x_i}\frac{\partial r}{\partial x_j}}_{=|\nabla r|^2_A} + \left(\frac{p-1}{p-Q}\right) W |\nabla r|^{p-2}_A ( v')^{p-1} \Phi_p^{\frac{p-1}{p-Q}-1}\nonumber \\ & \qquad\quad a_{ij}(x) \frac{\partial^2 \Phi_p}{\partial x_i\partial x_j} \\ &+ \left(\frac{Q-1}{p-1}\right) W |\nabla r|^{p-2}_A ( v')^{p-2}\Phi_p^{-\frac{p-1}{p-Q}}\underbrace{a_{ij}(x) \frac{\partial r}{\partial x_i}\frac{\partial r}{\partial x_j}}_{=|\nabla r|^2_A} +|\nabla r|^{p-2}_A ( v')^{p-1}W_r \underbrace{a_{ij}(x) \frac{\partial r}{\partial x_i}\frac{\partial r}{\partial x_j}}_{=|\nabla r|^2_A} \\ & + W |\nabla r|^{p-2}_A ( v')^{p-2} \frac{\partial a_{ij}(x)}{\partial x_j} v'\frac{\partial r}{\partial x_i} + \left( \frac{p-1}{p-Q}\right)^{p-2} W r^{\frac{(Q-1)(p-2)}{p-1}}(v')^{p-1}a_{ij}(x)\\ & \qquad \frac{\partial |\nabla \Phi_p|_A^{p-2}}{\partial x_j}\frac{\partial r}{\partial x_i}\\ & + \frac{(Q-1)(p-2)}{(p-1)r}|\nabla r|^{p-2}_A (v')^{p-1} \underbrace{a_{ij}(x) \frac{\partial r}{\partial x_i}\frac{\partial r}{\partial x_j}}_{=|\nabla r|^2_A} + (p-2)W|\nabla r|^{p-2}_A (v')^{p-2} v''\\ & \qquad \underbrace{a_{ij}(x) \frac{\partial r}{\partial x_i}\frac{\partial r}{\partial x_j}}_{=|\nabla r|^2_A} \end{align*}

where $|\nabla r|^2_A = \sum_{i,j=1}^n \partial_{x_i}r \partial_{x_j}r$. We assume there is the summation $\sum_{i,j=1}^n$, to get:

\begin{align*} &= W |\nabla r|^{p}_A ( v')^{p-2} \Biggl((p-1) v'' + \left(\frac{Q-1}{r}\right)\frac{1}{p-1} v'\nonumber \\ & \qquad \left. + \left(\frac{p-1}{p-Q}\right)\frac{\Phi_p^{\frac{p-1}{p-Q}-1}}{|\nabla r|_A^2} a_{ij}(x) \frac{\partial^2 \Phi_p}{\partial x_i \partial x_j} v'\right)\\ & + |\nabla r|_A^p (v')^{p-1}W_r + W|\nabla r|_A^{p-2}(v')^{p-1} \frac{\partial a_{ij}}{\partial x_j}\frac{\partial r}{\partial x_i} + \left(\frac{Q-1}{r}\right)\nonumber \\ & \qquad \left(1 - \frac{1}{p-1}\right)W |\nabla r|_A^p (v')^{p-1}\\ & + \underbrace{\left( \frac{p-1}{p-Q}\right)^{p-2} r^{\frac{(Q-1)(p-2)}{p-1}} |\nabla \Phi_p|^{p-2}_A}_{=|\nabla r|_A^{p-2}} \frac{W(v')^{p-1}a_{ij}(x)}{|\nabla \Phi_p|^{p-2}_A} \frac{\partial |\nabla \Phi_p|_A^{p-2}}{\partial x_j}\frac{\partial r}{\partial x_i}. \end{align*}

Now, we apply Equation (2.11) for $\partial r / \partial x_i$

\begin{align*} &=W |\nabla r|_A^p (v')^{p-2}\left( (p-1) v'' + \left[\frac{Q-1}{r} + \frac{W_r}{W}\right] v'\right)\nonumber \\ & \qquad + \left(\frac{p-1}{p-Q} \right)W |\nabla r|_A^{p-2} (v')^{p-1}\Phi_p^{\frac{p-1}{p-Q}-1}\\ & \times \frac{1}{|\nabla \Phi_p|^{p-2}_A}\nonumber \\ & \qquad \underbrace{\sum_{i,j=1}^n\left[|\nabla \Phi_p|^{p-2}_Aa_{ij}(x)\frac{\partial^2 \Phi_p}{\partial x_i\partial x_j} + a_{ij}(x)\frac{\partial |\nabla \Phi_p|_A^{p-2}}{\partial x_j}\frac{\partial \Phi_p}{\partial x_i} + |\nabla \Phi_p|^{p-2}_A\frac{\partial a_{ij}}{\partial x_j}\frac{\partial \Phi_p}{\partial x_i}\right]}_{\mathcal{L}_{p,A}\Phi_p(x)=0} \\ & = W (r)|\nabla r|_A^p (v')^{p-2}\left( (p-1) v'' + \left[\frac{Q-1}{r} + \frac{W_r}{W}\right] v'\right). \end{align*}

We conclude that (2.7) can be rewritten as:

(2.17)\begin{equation} W (r)|\nabla r|_A^p (v')^{p-2}\left( (p-1) v'' + \left[\frac{Q-1}{r} + \frac{W_r}{W}\right] v'\right) + |\nabla r|_A^pH(r) v^{p-1} =0, \end{equation}

which means $(r^{Q-1} W(r) (v'(r))^{p-1})' + r^{Q-1}H(r) v^{p-1}(r) =0,$ which is (2.8).

The next key element in our analysis is the first-order Picone identity.

Lemma 2.4. Let Ω be a bounded domain in $\mathbb{R}^n$. Let a complex-valued function u be differentiable a.e. in Ω. Let $1 \lt p \lt \infty$. Let a positive function v be differentiable in Ω. Define

(2.18)\begin{align} R(u,v) &= |\nabla u|^p_A - \langle A(x)\nabla\left(\frac{|u|^p}{v^{p-1}} \right),|\nabla v|^{p-2}_A\nabla v\rangle, \end{align}
(2.19)\begin{align} L(u,v) &= |\nabla u|^p_A -p\frac{|u|^{p-1} }{v^{p-1}}|\nabla v|^{p-2}_A \langle A(x)\nabla|u|, \nabla v \rangle + (p-1)\frac{|u|^p}{v^p}|\nabla v|^p_A, \end{align}

where $|\xi|^2_A= \langle A(x)\xi,\xi\rangle$. Then

\begin{equation*} L(u,v) =R(u,v)\geq 0. \end{equation*}

Moreover, $L(u,v)=0$ a.e. in Ω if and only if $u\geq 0$ and u = cv a.e. in Ω for some constant c in each component of Ω.

Proof of Lemma 2.4

It is easy to show that $R(u,v)=L(u,v)$ by the expansion of $R(u,v)$ as follows:

\begin{align*} R(u,v) &= |\nabla u|^p_A - \langle A(x)\nabla\left(\frac{|u|^p}{v^{p-1}} \right),|\nabla v|^{p-2}_A\nabla v \rangle \\ & = |\nabla u|^p_A -p\frac{|u|^{p-1} }{v^{p-1}}|\nabla v|^{p-2}_A \langle A(x) \nabla|u|, \nabla v\rangle + (p-1)\frac{|u|^p}{v^p}|\nabla v|^p_A\\ & = L(u,v). \end{align*}

Let $u(x)=R(x)+iI(x)$, where R(x) and I(x) are the real and imaginary parts of u. We can restrict to the set where $u(x)\neq 0$. Then, we have

(2.20)\begin{align} (\nabla |u|)(x) = \frac{1}{|u|} (R(x)\nabla R(x)+ I(x) \nabla I(x)). \end{align}

Since

\begin{align*} \left| \frac{1}{|u|} (R\nabla R+ I \nabla I) \right|^2_A \leq |\nabla R|^2_A + |\nabla I|^2_A, \end{align*}

we get $|\nabla |u||_A\leq |\nabla u|_A$ a.e. in Ω (see [Reference Ruzhansky, Sabitbek and Suragan25, Theorem 2.1]).

Let us recall Young’s inequality where for real numbers a and b we have

\begin{equation*} p ab \leq a^p + (p-1)b^{\frac{p}{p-1}}. \end{equation*}

By taking $a=|\nabla u|_A$ and $b=\frac{|u|^{p-1}}{v^{p-1}}|\nabla v|_A^{p-1}$, we prove $L(u,v)\geq 0$ in the following way:

\begin{align*} L(u,v)& = |\nabla u|^p_A -p\frac{|u|^{p-1} }{v^{p-1}}|\nabla v|^{p-2}_A \langle A(x) \nabla|u|,\nabla v\rangle + (p-1)\frac{|u|^p}{v^p}|\nabla v|^p_A\\ & = |\nabla u|^p_A -p\frac{|u|^{p-1}}{v^{p-1}}|\nabla |u||_A|\nabla v|^{p-1}_A + (p-1)\frac{|u|^p}{v^p}|\nabla v|^p_A \\ & + p\frac{|u|^{p-1}|\nabla v|^{p-2}_A}{v^{p-1}} \left( |\nabla |u||_A|\nabla v|_A -\langle A(x)\nabla |u|, \nabla v\rangle \right) \\ & \geq |\nabla u|^p_A -p\frac{|u|^{p-1}}{v^{p-1}}|\nabla u|_A|\nabla v|^{p-1}_A + (p-1)\frac{|u|^p}{v^p}|\nabla v|^p_A \\ & + p\frac{|u|^{p-1}|\nabla v|^{p-2}_A}{v^{p-1}} \left( |\nabla |u||_A|\nabla v|_A - \langle A(x)\nabla |u|, \nabla v\rangle \right)\\ & \geq p\frac{|u|^{p-1}|\nabla v|^{p-2}_A}{v^{p-1}} \left( |\nabla |u||_A|\nabla v|_A - \langle A(x)\nabla |u|, \nabla v\rangle \right). \end{align*}

We will now show that $|\nabla |u||_A|\nabla v|_A \geq\langle A(x)\nabla |u|, \nabla v\rangle $, which implies $L(u,v)\geq 0$. A direct computation gives

\begin{align*} 0 \leq | \nabla |u| - b\nabla v |^2_A &= \langle A(x) (\nabla |u| - b\nabla v), \nabla |u| - b\nabla v \rangle \\ & =|\nabla |u||^2_A -2b\langle A(x) \nabla |u|,\nabla v\rangle + b^2 |\nabla v|^2_A. \end{align*}

Setting $b=|\nabla v|_A^{-2} \langle A(x)\nabla |u|,\nabla v\rangle$ and rearranging produces

(2.21)\begin{equation} |\nabla |u||_A|\nabla v|_A \geq\langle A(x)\nabla |u|, \nabla v\rangle. \end{equation}

Observe that $L(u,v)=0$ if and only if

  • equality holds for $|\nabla |u||_A \leq |\nabla u|_A$ when $u\geq 0$;

  • equality holds in (2.21) when u = cv for some constant c.

The proof is complete.

Proof of Theorem 2.1

By Theorem 2.3, the conditions (2.5) and (2.6) provide the existence of a non-negative solution to the following equation

(2.22)\begin{equation} \nabla \cdot (W(x) |\nabla v|^{p-2}_A A(x)\nabla v)+ |\nabla d|^p_A(x)H(x) v^{p-1} = 0. \end{equation}

Then, we prove by applying properties of the (first-order) Picone identity, divergence theorem and the Equation (2.22), respectively. We have

\begin{align*} 0&\leq \int_{\Omega} W(x) R(u,v) dx\\ &= \int_{\Omega} W(x)|\nabla u|^p_A dx - \int_{\Omega} W(x) \langle A(x)\nabla\left(\frac{|u|^p}{v^{p-1}} \right), |\nabla v|^{p-2}_A\nabla v \rangle dx \\ & = \int_{\Omega} W(x)|\nabla u|^p_A - \int_{\Omega} |\nabla d|^p_AH(x) |u|^p dx. \end{align*}

This proves Theorem 2.1.

Next, we will give examples for operators $\mathcal{L}_A$ by taking different matrices A(x).

Euclidean Space $\mathbb{R}^n$: Let $\Omega = \mathbb{R}^n$. If we take A(x) as an identity matrix, then $\mathcal{L}_A = - \Delta$ is the standard Laplacian, $\Phi(x)= |x|^{2-n}$ and $d(x) = |x|$ with $x \in \mathbb{R}^n$.

Corollary 2.5. Let $\Omega = \mathbb{R}^n$. Let $W(|x|)$ and $H(|x|)$ be positive radially symmetric functions. Then the inequality

(2.23)\begin{equation} \int_{\mathbb{R}^n} W(|x|) |\nabla u|^2 dx \geq \int_{\mathbb{R}^n} H(|x|) |u|^2 dx \end{equation}

holds for all complex-valued functions $u \in C^1_0(\Omega)$ provided that the following conditions hold:

(2.24)\begin{equation} \int_{r_0}^{\infty} s^{n-1}H(s) ds \lt \infty, \,\, \text{and} \,\, \,\, \phi(r) = 2 \int_{r}^{\infty} s^{n-1}H(s) ds \lt \infty \,\,\, \text{for} \,\,\, r\geq r_0, \end{equation}
(2.25)\begin{equation} \int_{r_0}^{\infty} \frac{\phi(s)}{s^{n-1}W(s)} ds \leq \frac{1}{2} \,\,\, \text{for some} \,\,\, r_0 \gt 0. \end{equation}

The Heisenberg group $\mathbb{H}^1$: Let $\mathbb{H}^1:= \mathbb{R}^2 \times \mathbb{R}$ be Heisenberg group with $x = (x_1,x_2,x_3)$. We take

\begin{equation*}A(x):=\begin{pmatrix} 1 & 0 & -\frac{x_2}{2}\\ 0 & 1 & \frac{x_1}{2}\\ -\frac{x_2}{2} & \frac{x_1}{2} & \frac{x_1^2 + x_2^2}{4} \end{pmatrix}.\end{equation*}

Then, we have the following horizontal gradient

\begin{equation*}\nabla_{\mathbb{H}}:= (\partial_{x_1} - \frac{x_2}{2} \partial_{x_3}, \partial_{x_2} + \frac{x_1}{2} \partial_{x_3}),\end{equation*}

and the sub-Laplacian is given by:

\begin{equation*} \mathcal{L}_{\mathbb{H}} := \Delta_{x_1,x_2} + \frac{x_1^2 + x_2^2}{4} \partial_{x_3}^2 + (x_1\partial_{x_2} - x_2 \partial_{x_1})\partial_{x_3}. \end{equation*}

The quasi-norm ( $\mathcal{L}$-gauge) is given by: $ d_{\mathbb{H}}(x) = ( (x_1^2+x_2^2)^2 + 16 x_3^2 )^{\frac{1}{4}}. $ Note that the function $\Psi_{\mathcal{L}_{\mathbb{H}}}(x)$ could be explicitly calculated as follow:

\begin{align*} \Psi_{\mathcal{L}_{\mathbb{H}}}(x) = |\nabla_{\mathbb{H}} d_{\mathbb{H}}|^2(x) &= (X_1d_{\mathbb{H}})^2+ (X_2d_{\mathbb{H}})^2 \\ & = d_{\mathbb{H}}^{-6} [(x_1^2+x_2^2)^2 x_1^2 - 8 (x_1^2+x_2^2)x_1x_2x_3 + 16x_1^2x_3^2] \\ & + d_{\mathbb{H}}^{-6} [(x_1^2+x_2^2)^2 x_2^2 + 8 (x_1^2+x_2^2)x_1x_2x_3 + 16x_2^2x_3^2] \\ & = d_{\mathbb{H}}^{-6}(x_1^2+x_2^2)[(x_1^2+x_2^2)^2 + 16x_3^2] = |x'|^2 d_{\mathbb{H}}^{-2}(x), \end{align*}

where $|x'|^2 = x_1^2+ x_2^2$.

Corollary 2.6. Let Ω bounded domain in $\mathbb{H}^1$. Let W(x) and H(x) be positive radially symmetric functions. Then, the inequality

(2.26)\begin{equation} \int_{\Omega} W(x) |\nabla_{\mathbb{H}} u|^2 dx \geq \int_{\Omega} |\nabla_{\mathbb{H}} d_{\mathbb{H}}|^2 H(x) |u|^2 dx, \end{equation}

holds for all complex-valued functions $u \in C^1_0(\Omega)$ provided that the following conditions hold:

(2.27)\begin{equation} \int_{r_0}^{\infty} s^{Q-1}H(s) ds \lt \infty, \,\, \text{and} \,\, \,\, \phi(r) = 2 \int_{r}^{\infty} s^{Q-1}H(s) ds \lt \infty \,\,\, \text{for} \,\,\, r\geq r_0, \end{equation}
(2.28)\begin{equation} \int_{r_0}^{\infty} \frac{\phi(s)}{s^{Q-1}W(s)} ds \leq \frac{1}{2} \,\,\, \text{for some} \,\,\, r_0 \gt 0. \end{equation}

Baouendi–Grushin operator: Let Ω be an open subset of $\mathbb{R}^n=\mathbb{R}^k\times \mathbb{R}^l$ and $x\in \Omega$ with $x = (\xi,\zeta)$. For γ > 0, we take

\begin{equation*}A(x):=\begin{pmatrix} I_k & 0\\ 0 &\gamma|\xi|^{\gamma}I_l, \end{pmatrix},\end{equation*}

where Ik and Il are the identity matrices of size k and l, respectively. Then, we have the following vector field $\nabla_{\gamma}:= (\nabla_{\xi}, \gamma|\xi|^{\gamma}\nabla_{\zeta})$ and the Baouendi–Grushin operator

\begin{equation*}\mathcal{L}_{\gamma}:= -\Delta_{\xi}-\gamma^2|\xi|^{2\gamma}\Delta_{\zeta}.\end{equation*}

For $x = (\xi,\zeta) \in \mathbb{R}^k\times \mathbb{R}^l$, let $ d_{\gamma}(x) = (|\xi|^{2\gamma} + |\zeta|^2)^{1/2\gamma}$.

As in the Heisenberg group, the function $\Psi_{\mathcal{L}_{\gamma}}(x)$ could be explicitly calculated as follow:

\begin{align*} \Psi_{\mathcal{L}_{\gamma}}(x) = |\nabla_{\gamma} d_{\gamma}|^2(x) &= \sum_{i=1}^k (\partial_{\xi_i} d_{\gamma})^2 + \sum_{i=1}^l \gamma^2|\xi|^{2\gamma}(\partial_{\zeta_i} d_{\gamma})^2 \\ & = (|\xi|^{2\gamma} + |\zeta|^2)^{\frac{1}{\gamma}-2} (|\xi|^{4\gamma} + |\xi|^{2\gamma}|\zeta|^2) = \frac{|\xi|^{2\gamma}}{d_{\gamma}^{2\gamma}(x)}. \end{align*}

Corollary 2.7. Let Ω be an open subset of $\mathbb{R}^n=\mathbb{R}^k\times \mathbb{R}^l$ and $x\in \Omega$ with $x = (\xi,\zeta)$. Let W(x) and H(x) be positive radially symmetric functions. Then, the inequality:

(2.29)\begin{equation} \int_{\Omega} W(x) |\nabla_{\gamma} u|^2 dx \geq \int_{\Omega} |\nabla_{\gamma} d_{\gamma}|^{2} H(x) |u|^2 dx \end{equation}

holds for all complex-valued functions $u \in C^1_0(\Omega)$ provided that the following conditions hold:

(2.30)\begin{equation} \int_{r_0}^{\infty} s^{Q-1}H(s)ds \lt \infty, \,\, \text{and} \,\, \,\, \phi(r) = 2 \int_{r}^{\infty} s^{Q-1}H(s) ds \lt \infty \,\,\, \text{for} \,\,\, r\geq r_0, \end{equation}
(2.31)\begin{equation} \int_{r_0}^{\infty} \frac{\phi(s)}{s^{Q-1}W(s)} ds \leq \frac{1}{2}\,\,\, \text{for some} \,\,\, r_0 \gt 0. \end{equation}

The Engel group $\mathbb{E}$: Let $\mathbb{E}:= \mathbb{R}^2 \times \mathbb{R}\times \mathbb{R}$ be the Engel group with $x = (x_1,x_2,x_3,x_4)$. We take

\begin{equation*}A(x):=\begin{pmatrix} 1 & 0 & -\frac{x_2}{2}& - \frac{x_3}{2} + \frac{x_1x_2}{12}\\ 0 & 1 & \frac{x_1}{2}& \frac{x_1^2}{12}\\ -\frac{x_2}{2} & \frac{x_1}{2} & \frac{x_1^2+x_2^2}{4} & \frac{x_2}{2}\left( \frac{x_3}{2} -\frac{x_1x_2}{12} \right) + \frac{x_1^3}{24} \\ - \frac{x_3}{2} + \frac{x_1x_2}{12}&\frac{x_1^2}{12}& \frac{x_2}{2}\left( \frac{x_3}{2} -\frac{x_1x_2}{12} \right) + \frac{x_1^3}{24} & \left( \frac{x_3}{2} -\frac{x_1x_2}{12} \right)^2 + \frac{x_1^4}{144} \end{pmatrix}.\end{equation*}

Then the horizontal gradient and sub-Laplacian are given by:

\begin{equation*} \nabla_{\mathbb{E}} : = (X_1,X_2), \,\, \text{and} \,\, \mathcal{L}_{\mathbb{E}}:= X_1^2 + X_2^2, \end{equation*}

where

\begin{equation*} X_1:= \partial_{x_1} - \frac{x_2}{2} \partial_{x_3} - \left(\frac{x_3}{2}-\frac{x_1x_2}{12}\right)\partial_{x_4}, \,\, \text{and} \,\, X_2:=\partial_{x_2} + \frac{x_1}{2} \partial_{x_3} + \frac{x_1^2}{12} \partial_{x_4}. \end{equation*}

Corollary 2.8. Let Ω be a bounded domain in $\mathbb{E}$. Let W(x) and H(x) be positive radially symmetric functions. Then the inequality

(2.32)\begin{equation} \int_{\Omega} W(x) |\nabla_{\mathbb{E}} u|^2 dx \geq \int_{\Omega} |\nabla_{\mathbb{E}} d|^2 H(x) |u|^2 dx \end{equation}

holds for all complex-valued functions $u \in C^1_0(\Omega)$ provided that the following conditions hold:

(2.33)\begin{equation} \int_{r_0}^{\infty} s^{Q-1}H(s) ds \lt \infty, \,\, \text{and} \,\, \,\, \phi(r) = 2 \int_{r}^{\infty} s^{Q-1}H(s) ds \lt \infty \,\,\, \text{for} \,\,\, r\geq r_0, \end{equation}
(2.34)\begin{equation} \int_{r_0}^{\infty} \frac{\phi(s)}{s^{Q-1}W(s)} ds \leq \frac{1}{2} \,\,\, \text{for some} \,\,\, r_0 \gt 0. \end{equation}

The Cartan group $\mathcal{B}_5$: Let $\mathcal{B}_5:= \mathbb{R}^2 \times \mathbb{R}\times \mathbb{R}^2$ be the Cartan group with $x = (x_1,x_2,x_3,x_4,x_5)$. We take

\begin{equation*}A(x):=\begin{pmatrix} 1 & 0 & 0& 0& 0\\ 0 & 1 & -x_1& \frac{x_1^2}{2}& x_1x_2\\ 0 & -x_1& x_1^2 & - \frac{x_1^3}{2} & -x_1^2x_2\\ 0 & \frac{x_1^2}{2} & - \frac{x_1^3}{2} & \frac{x_1^4}{4} & \frac{x_1^3x_2}{2} \\ 0 & x_1x_2 &-x_1^2x_2 & \frac{x_1^3x_2}{2}& x_1^2x_2^2 \end{pmatrix}.\end{equation*}

Then the horizontal gradient and sub-Laplacian are given by:

\begin{equation*} \nabla_{\mathcal{B}_5} : = (X_1,X_2), \,\, \text{and } \,\, \mathcal{L}_{\mathcal{B}_5}:= X_1^2 + X_2^2, \end{equation*}

where

\begin{equation*} X_1:= \partial_{x_1} \,\, \text{and} \,\, X_2:=\partial_{x_2} - x_1 \partial_{x_3} + \frac{x_1^2}{2} \partial_{x_4} + x_1x_2\partial x_5. \end{equation*}

Corollary 2.9. Let Ω be a bounded domain in $\mathcal{B}_5$. Let W(x) and H(x) be positive radially symmetric functions. Then, the inequality

(2.35)\begin{equation} \int_{\Omega} W(x) |\nabla_{\mathcal{B}_5} u|^2 dx \geq \int_{\Omega} |\nabla_{\mathcal{B}_5}d|^2H(x) |u|^2 dx, \end{equation}

holds for all complex-valued functions $u \in C^1_0(\Omega)$ provided that the following conditions hold:

(2.36)\begin{equation} \int_{r_0}^{\infty} s^{Q-1}H(s) ds \lt \infty, \,\, \text{and} \,\, \,\, \phi(r) = 2 \int_{r}^{\infty} s^{Q-1}H(s) ds \lt \infty \,\,\, \text{for} \,\,\, r\geq r_0, \end{equation}
(2.37)\begin{equation} \int_{r_0}^{\infty} \frac{\phi(s)}{s^{Q-1}W(s)} ds \leq \frac{1}{2} \,\,\, \text{for some} \,\,\, r_0 \gt 0. \end{equation}

3. Rellich inequality with Bessel pairs

We conclude the paper by presenting a Rellich inequality involving Bessel pairs. This result is derived as a byproduct of the second-order Picone type identity in conjunction with the divergence theorem.

Theorem 3.1. Let Ω be a bounded domain in $\mathbb{R}^n$. Let $W \in C^{2}(\Omega)$ and $H \in L^1_{loc}(\Omega)$ be positive radially symmetric functions. Suppose that there exists a positive function $v\in C^{2}(\Omega)$ such that:

(3.1)\begin{equation} \Delta (W(x) |\Delta v|^{p-2}\Delta v) \geq H(x) v^{p-1}, \end{equation}

with $-\Delta v \gt 0$ a.e. in Ω. Then for all complex-valued functions $ u \in C^{2}_0(\Omega)$, we have

(3.2)\begin{equation} \int_{\Omega} W(x) |\Delta |u||^p dx \geq \int_{\Omega} H(x) |u|^p dx, \end{equation}

where $1 \lt p \lt n$.

Remark 3.2. Note that the weighted Rellich type inequalities with boundary terms for general (real-valued) vector fields were established by the authors with Suragan in [Reference Ruzhansky, Sabitbek and Suragan26, Reference Ruzhansky, Sabitbek and Suragan30, Reference Ruzhansky, Sabitbek and Suragan32]. Also Goldstein–Kombe–Yerner in [Reference Goldstein, Kombe and Yener19] proved the weighted Rellich inequality in the setting of Carnot groups.

Here we present the corollary for p = 2 to the above theorem:

Corollary 3.3. Let Ω be a bounded domain in $\mathbb{R}^n$. Let $W \in C^{2}(\Omega)$ and $H \in L^1_{loc}(\Omega)$ be positive radially symmetric functions. Suppose that a positive function $v\in C^{\infty}(\Omega)$ satisfies:

(3.3)\begin{equation} \Delta (W(x)\Delta v) \geq H(x) v, \end{equation}

with $-\Delta v \gt 0$ a.e. in Ω. Then for all complex-valued functions $ u \in C^{2}_0(\Omega)$, we have

(3.4)\begin{equation} \int_{\Omega} W(x) |\Delta |u||^2 dx \geq \int_{\Omega} H(x) |u|^2 dx. \end{equation}

In order to prove Theorem 3.1, we establish the (second-order) Picone type identity.

Lemma 3.4. Let $\Omega \subset \mathbb{R}^n$ be open set. Let v be twice differentiable a.e. in Ω and satisfying the conditions v > 0 and $-\Delta v \gt 0$ a.e. in Ω. Let a complex-valued function u be twice differentiable a.e. in Ω. For p > 1 we define

(3.5)\begin{equation} R_1(u,v):= |\Delta |u||^p - \Delta\left( \frac{|u|^p}{v^{p-1}} \right) |\Delta v|^{p-2} \Delta v, \end{equation}

and

(3.6)\begin{align} L_1(u,v):= &|\Delta |u||^p - p \left(\frac{|u|}{v}\right)^{p-1} \Delta |u| |\Delta v|^{p-2} \Delta v\\ & + (p-1)\left( \frac{|u|}{v}\right)^p |\Delta v|^p - p(p-1)\frac{|u|^{p-2}}{v^{p-1}} |\Delta v|^{p-2} \Delta v \left( \nabla |u| - \frac{|u|}{v} \nabla v\right)^2. \nonumber \end{align}

Then, we have

(3.7)\begin{equation} L_1(u,v)=R_1(u,v) \geq 0. \end{equation}

Proof of Lemma 3.4

We show that $R_1(u,v)=L_1(u,v)$ by a simple expansion of $R_1(u,v)$ as follows:

\begin{align*} \Delta\left( \frac{|u|^p}{v^{p-1}} \right) & = p \frac{|u|^{p-1}}{v^{p-1}}\Delta |u| - (p-1)\frac{|u|^p}{v^p}\Delta v + p(p-1) \frac{|u|^{p-2}}{v^{p-1}} \left| \nabla |u| - \frac{|u|}{v} \nabla v \right|^2. \end{align*}

The rest of proof is to apply Young’s inequality, then we proceed as follows:

\begin{equation*} p \frac{|u|^{p-1}}{v^{p-1}} \Delta |u| |\Delta v|^{p-2} \Delta v \leq |\Delta |u||^p + (p-1) \frac{|u|^p}{v^p}|\Delta v|^p, \end{equation*}

where p > 1. This gives,

\begin{align*} L_1(u,v)\geq - p(p-1)\frac{|u|^{p-2}}{v^{p-1}} |\Delta v|^{p-2} \Delta v \left( \nabla |u| - \frac{|u|}{v} \nabla v\right)^2. \end{align*}

It is easy to see that $L_1(u,v)\geq 0$ by observing the fact $-\Delta v \gt 0$.

Proof of Theorem 3.1

We prove by using the (second-order) Picone type identity and Green’s second identity as follows:

\begin{align*} 0 \leq \int_{\Omega} W(x) R_1(u,v) dx &= \int_{\Omega} W(x) |\Delta |u||^p dx -\int_{\Omega} \frac{|u|^p}{v^{p-1}} \Delta (W(x)|\Delta v|^{p-2} \Delta v ) dx\\ & \leq \int_{\Omega} W(x) |\Delta |u||^p dx -\int_{\Omega} H(x) |u|^p dx, \end{align*}

using (3.1). This completes the proof.

3.1. Several versions of Rellich type inequalities

Here by letting $W\equiv 1$ and $v=|x|^{-\frac{n-4}{2}}$ into (3.3), we obtain the function:

\begin{equation*} H(x) = \frac{n^2(n-4)^2}{16} |x|^{-4}, \end{equation*}

and inserting to inequality (3.4), we have the following result:

Corollary 3.5. (Rellich inequality)

Let $n\geq 5$. Then for all complex-valued functions $u \in C_0^{\infty} (\mathbb{R}^n\backslash\{0\})$, we have

(3.8)\begin{equation} \int_{\mathbb{R}^n} |\Delta |u||^2 dx \geq \frac{n^2(n-4)^2}{16} \int_{\mathbb{R}^n} \frac{|u|^2}{|x|^4}dx. \end{equation}

Corollary 3.6. Let $n\geq 3$ and $2 - \frac{n}{p} \lt \gamma \lt \frac{n(p-1)}{p}$. Then for all complex-valued functions $u \in C_0^{\infty} (\mathbb{R}^n\backslash\{0\})$, we have

(3.9)\begin{equation} \int_{\mathbb{R}^n} |x|^{\gamma p} |\Delta u|^p dx \geq \left( \frac{n}{p} -2 + \gamma \right)^p \left( \frac{n(p-1)}{p} -\gamma\right)^p \int_{\mathbb{R}^n}|x|^{(\gamma -2)p} |u|^p dx. \end{equation}

In the case γ = 0 and for $1 \lt p \lt n/2$, we get

(3.10)\begin{equation} \int_{\mathbb{R}^n} |\Delta u|^p dx \geq \left( \frac{n}{p} -2 \right)^p \left( \frac{n(p-1)}{p}\right)^p \int_{\mathbb{R}^n}|x|^{-2p} |u|^p dx. \end{equation}

Remark 3.7. Note that the weighted Rellich inequality (3.9) is proved by Mitidieri [Reference Mitidieri23] and Lp-Rellich inequality (3.10) by Okazawa [Reference Okazawa24] with the optimal constants, respectively.

Proof of Corollary 3.6

Let us set

(3.11)\begin{equation} W = |x|^{\gamma p} ,\,\, \text{and} \,\,\, v = |x|^{\alpha}, \end{equation}

where $\alpha = - (n/p +a -2)$. By inserting to (3.1), we arrive at

\begin{align*} \Delta (W|\Delta v|^{p-2} \Delta v) = C_{\alpha,p,n,\gamma} |x|^{\alpha(p-1) +(\gamma-2)p }, \end{align*}

where

\begin{equation*}C_{\alpha,p,n,\gamma}:=|\alpha|^{p-1} (\alpha + n-2)^{p-1}(\alpha p -\alpha -2p +2 + \gamma p) (\alpha p -\alpha -2p + \gamma p +n).\end{equation*}

Now we put the value of α in the constant, then we get

(3.12)\begin{equation} H(x) = \left( \frac{n}{p} -2 + \gamma \right)^p \left( \frac{n(p-1)}{p} -\gamma\right)^p |x|^{(\gamma -2)p}. \end{equation}

The statement then follows from Theorem 3.1.

References

Adimurthi, , Chaudhuri, N. and Ramaswamy, N., An improved Hardy Sobolev inequality and its applications, Proc. Am. Math. Soc. 130 (2002), 489505.Google Scholar
Agarwal, R. P., Bohner, M. and Li, W.-T., Nonoscillation and Oscillation: Theory for Functional Differential Equations (Dekker, New York, 1995).Google Scholar
Allegretto, W. and Huang, Y. X., A Picone’s identity for the p-Laplacian and applications, Nonlinear Anal. Theory Methods Appl. 32(7) (1998), 819830.Google Scholar
Ancona, A., On strong barriers and an inequalities of Hardy for domains $\mathbb{R}^n$, J. London Math. Soc. 43 (1986), 274290.Google Scholar
Avkhadiev, F. G. and Laptev, A., On a sharp Hardy inequality for convex domains, In: Around the Research of Vladimir Maz’ya I, Vol. 12, International Mathematical Series, pp. 112 (Springer, New York, 2010).Google Scholar
Avkhadiev, F. G. and Wirths, K. J., Unified Poincaré and Hardy inequalities with sharp constants for convex domains, Z. Angew. Math. Mech. 87 (2007), 632642.Google Scholar
Boccardo, L. and Galloutet, T., Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal. 87 (1989), 149169.Google Scholar
Bonfiglioli, A., Lanconelli, E. and Uguzzoni, F., Stratified Lie Groups and Potential Theory for their Sub-Laplacians (Springer-Verlag, Berlin-Heidelberg, 2007).Google Scholar
Bosi, R., Dolbeault, J. and Esteban, M. J., Estimates for the optimal constants in multipolar Hardy inequalities for Schrödinger and Dirac operators, Commun. Pure Appl. Anal. 7(3) (2008), 533562.Google Scholar
Brezis, H. and Vazquez, J. L., Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complutense Madrid 10 (1997), 443469.Google Scholar
Caffarelli, L., Kohn, R. and Nirenberg, L., First order interpolation inequalities with weights, Compos. Math. 53 (1984), 259275.Google Scholar
Cazacu, C., The method of super-solutions in Hardy and Rellich inequalities in the L 2 setting: an overview of well-known results and short proofs, Rev. Roumaine Math. Pures Appl. 66(3-4) (2021), 617638.Google Scholar
Cazacu, C. and Zuazua, E., Improved multipolar Hardy inequalities, In: Studies in Phase Space Analysis with Applications to PDEs, Vol. 84, Progress in Nonlinear Differential Equations and Their Applications, pp. 3552 (Birkhuser/Springer, New York, 2013).Google Scholar
Davies, E. B., A review of Hardy inequalities, In: The Mazya Anniversary Collection, Vol. 2 (Rostock, 1998), Vol. 110, Operator Theory: Advances and Applications, pp. 5567 (Birkhäuser, Basel, 1999).Google Scholar
Felli, V. and Terracini, S., Elliptic equations with multi-singular inverse-square potentials and critical nonlinearity, Commun. Partial Differ. Equ. 31 (2006), 469495.Google Scholar
Ghoussoub, N. and Moradifam, A., Functional Inequalities New Perspectives and New Applications, Vol. 187, Mathematical Surveys and Monographs (American Mathematical Society, Providence, RI, 2013).Google Scholar
Ghoussoub, N. and Moradifam, A., Bessel pairs and optimal Hardy and Hardy–Rellich inequalities, Math. Ann. 349 (2011), 157.Google Scholar
Goldstein, J., Kombe, I. and Yener, A., A unified approach to weighted Hardy type inequalities on Carnot groups, Discrete Contin. Dyn. Syst. 37(4) (2017), 20092021.Google Scholar
Goldstein, J., Kombe, I. and Yener, A., A general approach to weighted Rellich type inequalities on Carnot groups, Montash. Math. 186(1) (2018), 4972.Google Scholar
Kufner, A. and Opic, B., Hardy Type Inequalities, Vol. 219, Pitman Research Notes in Mathematics Series (Longman Scientific and Technical, Harlow, 1990).Google Scholar
Kilpelainen, T. and Maly, J., Degenerate elliptic equations with measure data and nonlinear potentials, Ann. Scuola Norm. Sup. Pisa IV 19 (1992), 591613.Google Scholar
Maz’ya, V. G., Sobolev Spaces (Springer-Verlag, Berlin, 1985).Google Scholar
Mitidieri, E., A simple approach to Hardy inequalities, Math. Notes 67 (2000), 479486.Google Scholar
Okazawa, N., Lp-theory of Schrödinger operators with strongly singular potentials, Japan. J. Math. 22 (1996), 199239.Google Scholar
Ruzhansky, M., Sabitbek, B. and Suragan, D., Weighted Lp-Hardy and Lp-Rellich inequalities with boundary terms on stratified Lie groups, Rev. Mat. Complutense 32 (2019), 1935.Google Scholar
Ruzhansky, M., Sabitbek, B. and Suragan, D., Weighted anisotropic Hardy and Rellich type inequalities for general vector fields, Nonlinear Differ. Equ. Appl. 26(2) (2019), 13.Google Scholar
Ruzhansky, M. and Suragan, D., Hardy inequalities on homogeneous groups, Vol. 327, Progress in Mathematics, XVI, 571 (Birkhäuser, 2019). doi: 10.1007/978-3-030-02895-4Google Scholar
Ruzhansky, M. and Verma, D., Hardy inequalities on metric measure spaces, Proc. R. Soc. A 475 (2019), 20180310, 15 pp.Google ScholarPubMed
Ruzhansky, M. and Suragan, D., Anisotropic L 2-weighted Hardy and L 2-Caffarelli-Kohn-Nirenberg inequalities, Commun. Contemp. Math. 19(6) (2017), 1750014.Google Scholar
Ruzhansky, M., Sabitbek, B. and Suragan, D., Principal frequency of p-versions of sub Laplacian for general vector fields, Z. Anal. Anwend. 40(1) (2021), 97109.Google Scholar
Ruzhansky, M., Sabitbek, B. and Suragan, D., Geometric Hardy and Hardy–Sobolev inequalities on Heisenberg groups, Bull. Math. Sci. 10(03) (2020), 2050016.Google Scholar
Ruzhansky, M., Sabitbek, B. and Suragan, D., Hardy and Rellich inequalities for anisotropic p-sub-Laplacians, Banach J. Math. Anal. 14 (2020), 380398.Google Scholar
Sabitbek, B. and Suragan, D., Horizontal weighted Hardy–Rellich type inequality on stratified Lie groups, Complex Anal. Oper. Theory 12(6) (2018), 14691480.Google Scholar
Sabitbek, B., Hardy–Sobolev type inequalities on homogeneous groups and applications, PhD Thesis (Al-Farabi Kazakh National University, 2019).Google Scholar
Wang, Z. Q. and Willem, M., Caffarelli-Kohn-Nirenberg inequalities with remainder terms, J. Funct. Anal. 203 (2003), 550568.Google Scholar