No CrossRef data available.
Article contents
A Geometrical Proof of a Theorem connected with the Tetrahedron
Published online by Cambridge University Press: 20 January 2009
Extract
1. The six planes through the middle points of the edges of a tetrahedron perpendicular to the opposite edges are concurrent.
- Type
- Research Article
- Information
- Copyright
- Copyright © Edinburgh Mathematical Society 1909
References
* Systematische Entwickelung der Abhängigkeit geometriseher Gestalten von einander (problem 39 of the supplement), Gesammelte Werke, vol. 1, p. 446Google Scholar; Vermischte Sätze und Aufgaben, ibid., vol. 2, p. 675.
† Bulletin des sciences mathématiques et astronomiques, ser. 2, vol. 7 (1883), pp. 314–324.Google Scholar
‡ Second series, vol. 3, No. 4 (1902), On some curves connected with a system of similar conics.
§ Vol. 4, No. 1 (1903), On the envelope of the axes of a system of conics passing through three fixed points.
* Collected Mathematical Papers, vol. 7, p. 568.Google Scholar
* See the paper entitled, On some curves, etc., referred to above.Google Scholar
* See the paper entitled, On the envelope of the axes, etc., referred to above.Google Scholar