Published online by Cambridge University Press: 20 January 2009
In a previous paper [1] we constructed a free resolution for a class of groups which include Fuchsian groups with compact orbit spaces [2, 3], infinite polyhedral groups, plane crystallographic groups p2, p3, p4 and p6 and Dyck's groups [4], and used this resolution for computation of the integral homology and cohomology of these groups. Lyndon [5] determined the cohomology of groups with a single defining relation. The plane crystallographic groups p1 and pg and Artin's braid group B3 are among these groups. In this paper we have constructed free resolutions for certain classes of groups–resolutions which are particularly suitable for direct computation of the homology and the cohomology of these groups for any coefficient module. These classes of groups include the plane crystallographic groups pm, cm and pgg. We have computed the integral homology and cohomology from each of the free resolutions obtained.