Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T06:54:22.857Z Has data issue: false hasContentIssue false

Finitely Embedded Modules Over Group Rings

Published online by Cambridge University Press:  20 January 2009

Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let R be a ring and X a right R-module (all rings have identities and all modulesare unitary). The intersection of all non-zero submodules of X is denoted by μ(X). The module X is called monolithic if and only if μ(X)≠0 and in this case μ(X) is anessential simple submodule of X. (Recall that a submodule Y of X is essential if and only if YA ≠ 0 for every non-zero submodule A of X.) It is well known that a module X is monolithic if and only if there is a simple right R-module U such that X is a submodule of the injective hull E(U) of U. If x is a non-zero element of an arbitrary right. R-module X then by Zorn's Lemma there is a submodule Yx of X maximal with the property x ∉ Yx. It can easily be checked that X/Yx is monolithic and ⊂ Yx = 0, where the intersection is taken over all non-zero elements x of X.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1978

References

REFERENCES

(1) Connell, I. G., On the group ring, Canad. J. Math. 15 (1963), 650685.CrossRefGoogle Scholar
(2) Formanek, E. and Jategaonkar, A. V., Subrings of Noetherian rings, Proc. Amer. Math. Soc. 46 (1974), 181186.CrossRefGoogle Scholar
(3) Goldie, A. W., The structure of prime rings under ascending chain conditions, Proc. London Math. Soc. (3)8 (1958), 589608.CrossRefGoogle Scholar
(4) Hall, P., Finiteness conditions for soluble groups, Proc. London Math. Soc. (3) 4 (1954), 419436.Google Scholar
(5) Hall, P., On the finiteness of certain soluble groups, Proc. London Math. Soc. (3)9 (1959),595622.CrossRefGoogle Scholar
(6) Jategaonkar, A. V., Integral group rings of polycyclic-by-finite groups, J. Pure Appl.Algebra 4 (1974), 337343.CrossRefGoogle Scholar
(7) Mal'cev, A. I., On certain classes of infinite soluble groups, Mar. Sb. 28 (1951), 567588 (Amer. Math. Soc. Translations (2)2(1956), 1-21).Google Scholar
(8) Matlis, E., Modules with descending chain condition, Trans. Amer. Math. Soc. 97 (1960), 495508.CrossRefGoogle Scholar
(9) Nouazé, Y. and Gabriel, P., Ideaux premiers de l'algèbre enveloppante d'une algèbre de Lie nilpotente, J. Algebra 6 (1967), 7799.CrossRefGoogle Scholar
(10) Passman, D. S., Primitive group rings, Pacific J.Math. 47 (1973), 499506.CrossRefGoogle Scholar
(11) Roseblade, J. E., Group rings of polycyclic groups, J. Pure Appl.Algebra 3 (1973), 307328.Google Scholar
(12) Roseblade, J. E. and Smith, P. F., A note on hypercentral group rings, J. London Math. Soc. (2) 13 (1976), 183190.Google Scholar
(13) Rosenberg, A. and Zelinsky, D., Finiteness of the injective hull, Math. Z. 70 (1959), 372380.CrossRefGoogle Scholar
(14) Snider, R. L., Primitive ideals in group rings of polycyclic groups, Proc. Amer. Math. Soc. 57 (1976), 810.CrossRefGoogle Scholar
(15) Vámos, P., The dual of the notion of ‘finitely generated’, J. London Math. Soc. 43 (1968), 643646.CrossRefGoogle Scholar
(16) Zalesskii, A. E., Irreducible representations of finitely generated nilpotent torsion- free groups, Math. Notes 9 (1971), 117123.CrossRefGoogle Scholar