Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T00:19:48.007Z Has data issue: false hasContentIssue false

Finite p-solvable groups with three p-regular conjugacy class sizes

Published online by Cambridge University Press:  30 August 2012

Zeinab Akhlaghi
Affiliation:
Faculty of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), 15914 Tehran, Iran ([email protected]; [email protected])
Antonio Beltrán
Affiliation:
Departamento de Matemáticas, Universidad Jaume I, 12071 Castellón, Spain ([email protected])
María José Felipe
Affiliation:
Instituto Universitario de Matemática Pura y Aplicada, Universidad Politécnica de Valencia, 46022 Valencia, Spain ([email protected])
Maryam Khatami
Affiliation:
Faculty of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), 15914 Tehran, Iran ([email protected]; [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let G be a finite p-solvable group. We describe the structure of the p-complements of G when the set of p-regular conjugacy classes has exactly three class sizes. For instance, when the set of p-regular class sizes of G is {1, pa, pam} or {1, m, pam} with (m, p) = 1, then we show that m = qb for some prime q and the structure of the p-complements of G is determined.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2013

References

1.Alemany, E., Beltrán, A. and Felipe, M. J., Finite groups with two p-regular conjugacy class lengths, II, Bull. Austral. Math. Soc. 79 (2009), 419425.CrossRefGoogle Scholar
2.Beltrán, A. and Felipe, M. J., Finite groups with two p-regular conjugacy class lengths, Bull. Austral. Math. Soc. 67 (2003), 163169.CrossRefGoogle Scholar
3.Beltrán, A. and Felipe, M. J., Certain relations between p-regular class sizes and the p-structure of p-solvable groups, J. Austral. Math. Soc. 77 (2004), 387400.CrossRefGoogle Scholar
4.Beltrán, A. and Felipe, M. J., Prime powers as conjugacy class lengths of p-elements, Bull. Austral. Math. Soc. 69 (2004), 317325.CrossRefGoogle Scholar
5.Beltrán, A. and Felipe, M. J., Variations on a theorem by Alan Camina on conjugacy class sizes, J. Alg. 296 (2006), 253266.CrossRefGoogle Scholar
6.Beltrán, A. and Felipe, M. J., Some class size conditions implying solvability of finite groups, J. Group Theory 9 (2006), 787797.CrossRefGoogle Scholar
7.Beltrán, A. and Felipe, M. J., Nilpotency of p-complements and p-regular conjugacy class lengths, J. Alg. 308 (2007), 641653.CrossRefGoogle Scholar
8.Camina, A. R. and Camina, R. D., Implications of conjugacy class size, J. Group Theory 1 (1998), 257269.CrossRefGoogle Scholar
9.Huppert, B., Character theory of finite groups, De Gruyter Exp ositions in Mathematics, Volume 25 (Walter de Gruyter, Berlin, 1998).CrossRefGoogle Scholar
10.Isaacs, I. M., Groups with many equal classes, Duke Math. J. 37 (1970), 501506.CrossRefGoogle Scholar
11.Kurzweil, K. and Stellmacher, B., The theory of finite groups: an introduction (Springer, 2004).CrossRefGoogle Scholar
12.Robinson, D. J. S., A course in the theory of groups, 2nd edn, Graduate Texts in Mathematics, Volume 80 (Springer, 1996).CrossRefGoogle Scholar
13.Schmidt, R., Subgroup lattices of groups (Walter de Gruyter, Berlin, 1994).CrossRefGoogle Scholar