No CrossRef data available.
Published online by Cambridge University Press: 20 January 2009
We consider faithful finitary linear representations of (generalized) wreath products A wrΩH of groups A by H over (potentially) infinite-dimensional vector spaces, having previously considered completely reducible such representations in an earlier paper. The simpler the structure of A the more complex, it seems, these representations can become. If A has no non-trivial abelian normal subgroups, the conditions we present are both necessary and sufficient. They imply, for example, that for such an A, if there exists such a representation of the standard wreath product A wr H of infinite dimension, then there already exists one of finite dimension.