Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T01:05:02.106Z Has data issue: false hasContentIssue false

Enlargements of regular semigroups

Published online by Cambridge University Press:  20 January 2009

M. V. Lawson
Affiliation:
University of Wales, Bangor School of Mathematics Dean Street Bangor, Gwynedd LL57 1UT Cymru/Wales
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We introduce a class of regular extensions of regular semigroups, called enlargements; a regular semigroup T is said to be an enlargement of a regular subsemigroup S if S = STS and T = TST. We show that S and T have many properties in common, and that enlargements may be used to analyse a number of questions in regular semigroup theory.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1996

References

REFERENCES

1. Allen, D., A generalisation of the Rees theorem to a class of regular semigroups, Semigroup Forum 2 (1971), 321331.CrossRefGoogle Scholar
2. Blyth, T. S. and Hickey, J. B., RP-dominated regular semigroups, Proc. Roy. Soc. Edinburgh 99A (1984), 185191.CrossRefGoogle Scholar
3. Blyth, T. S. and McFadden, R., Naturally ordered regular semigroups with a greatest idempotent, Proc. Roy. Soc. Edinburgh 91A (1981), 107122.CrossRefGoogle Scholar
4. Blyth, T. S. and McFadden, R., On the construction of a class of regular semigroups, J. Algebra 81 (1983), 122.CrossRefGoogle Scholar
5. Boothby, W. M., An introduction to differential manifolds and Riemannian geometry (Academic Press, 1986).Google Scholar
6. Da Silva, P. V. A., Contributions to combinatorial semigroup theory (Ph.D. Thesis, University of Glasgow, 1991).Google Scholar
7. Ehresmann, C., Oeuvres complètes et commentées (ed. Ehresmann, A. C., Suppl. Cahiers Topologies Géom. Differentielle, Amiens, 19801984).Google Scholar
8. Hall, T. E., On regular semigroups, J. Algebra 24 (1973), 124.CrossRefGoogle Scholar
9. Hall, T. E., Some properties of local subsemigroups inherited by larger subsemigroups, Semigroup Forum 25 (1982), 3549.CrossRefGoogle Scholar
10. Henckell, K. and Rhodes, J., The theorem of Knast, the PG = BG and Type-II conjectures, in Monoids and semigroups with applications (ed. Rhodes, J., World Scientific, 1991).Google Scholar
11. Hickey, J. B., Semigroups under a sandwich operation, Proc. Edinburgh Math. Soc. 26 (1983), 371382.CrossRefGoogle Scholar
12. Hotzel, E., Dual D-operands and the Rees theorem, in Colloquia Mathematica Societatis Janos Bolyai 20, Algebraic theory of semigroups, 247275.Google Scholar
13. Howie, J. M., An introduction to semigroup theory (Academic Press, 1976).Google Scholar
14. Lawson, M. V., The geometric theory of inverse semigroups I: E-unitary semigroups, J Pure Appl. Algebra 67 (1990), 151177.CrossRefGoogle Scholar
15. Lawson, M. V., The geometric theory of inverse semigroups II: E-unitary covers of inverse semigroups, J. Pure Appl. Algebra 83 (1992), 121139.CrossRefGoogle Scholar
16. Lawson, M. V., The geometric theory of inverse semigroups III: idempotent pure coextensions (U.C.N.W. Maths Preprint 91.23).Google Scholar
17. Lawson, M. V., An equivalence theorem for inverse semigroups, Semigroup Forum 47 (1993), 714.CrossRefGoogle Scholar
18. Lawson, M. V., Almost factorisable inverse semigroups. Glasgow Math. J. 35 (1993), 97111.Google Scholar
19. Lawson, M. V., Inverse semigroup enlargements of inverse monoids (U.C.N.W. Maths Preprint 92.17).Google Scholar
20. Loganathan, M. and Chandrasekaran, V. M., Regular semigroups with a split map, Semigroup Forum 44 (1992), 199212.CrossRefGoogle Scholar
21. MacLane, S., Categories for the working mathematician (Springer-Verlag, 1971).Google Scholar
22. McAlister, D. B., Groups, semilattices and inverse semigroups II, Trans. Amer. Math. Soc. 196 (1974), 351370.CrossRefGoogle Scholar
23. McAlister, D. B., 0-bisimple inverse semigroups, Proc. London Math. Soc. (3) 28 (1974), 193221.CrossRefGoogle Scholar
24. McAlister, D. B., Some covering and embedding theorems for inverse semigroups, J. Austral. Math. Soc. (Ser. A) 22 (1976), 188211.CrossRefGoogle Scholar
25. McAlister, D. B., E-unitary inverse semigroups over semilattices, Glasgow Math. J. 19 (1978), 112.CrossRefGoogle Scholar
26. McAlister, D. B., Regular Rees matrix semigroups and regular Dubreil-Jacotin semigroups, J. Austral. Math. Soc. (Ser. A) 31 (1981), 325336.CrossRefGoogle Scholar
27. McAlister, D. B., Rees matrix covers for locally inverse semigroups, Trans. Amer. Math. Soc. 277 (1983), 727738.CrossRefGoogle Scholar
28. McAlister, D. B., Rees matrix covers for regular semigroups, J. Algebra 89 (1984), 264279.CrossRefGoogle Scholar
29. McAlister, D. B., Some covering theorems for locally inverse semigroups, J. Australian Math. Soc. (Ser. A) 39 (1985), 6374.CrossRefGoogle Scholar
30. McAlister, D. B., Quasi-ideal embeddings and Rees matrix covers for regular semigroups, J. Algebra 152 (1992), 166183.CrossRefGoogle Scholar
31. McAlister, D. B. and McFadden, R. B., Regular semigroups with inverse transversals, Quart. J. Math. Oxford (2) 34 (1983), 459474.CrossRefGoogle Scholar
32. McAlister, D. B. and McFadden, R. B., Maximum idempotents in naturally ordered regular semigroups, Proc. Edinburgh Math. Soc. (2) 26 (1983), 213220.CrossRefGoogle Scholar
33. Meakin, J. and Pastijn, F., The structure of pseudo-semilattices. Algebra Universalis 13 (1981), 355372.CrossRefGoogle Scholar
34. Miller, D. D. and Clifford, A. H., Regular D-classes in semigroups, Trans. Amer. Math. Soc. 12 (1956), 270280.Google Scholar
35. Munn, W. D., The idempotent separating congruences on a regular 0-bisimple semigroup, Proc. Edinburgh Math. Soc. (2) 15 (1967), 233240.CrossRefGoogle Scholar
36. Nambooripad, K. S. S., Structure of regular semigroups I (Mem. Amer. Math. Soc. 22 (1979), Number 224).Google Scholar
37. Nambooripad, K. S. S., The natural partial order on a regular semigroup, Proc. Edinburgh Math. Soc. 23 (1980), 249260.CrossRefGoogle Scholar
38. Pastijn, F., Regular locally testable semigroups as semigroups of quasi-ideals, Acta Math. Acad. Sci. Hung. 36 (1980), 161166.CrossRefGoogle Scholar
39. Petrich, M., Inverse semigroups (John Wiley and Sons, 1984).Google Scholar
40. Preston, G. B., Congruences on Brandt semigroups, Math. Ann. 139 (1959), 9194.CrossRefGoogle Scholar
41. Reilly, N. R., Bisimple inverse semigroups, Proc. Glasgow Math. Assoc. 7 (1968), 101104.Google Scholar
42. Reilly, N. R. and Clifford, A. H., Bisimple inverse semigroups as semigroups of ordered triples, Canadian J. Math. 20 (1968), 2539.CrossRefGoogle Scholar
43. Steinfeld, O., Quasi-ideals in rings and semigroups (Akademiai Kiado, Budapest, 1978).Google Scholar
44. Talwar, S., Morita equivalence for semigroups (Preprint, University of York, 1992).Google Scholar