Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T16:29:34.890Z Has data issue: false hasContentIssue false

Embedding nil algebras in train algebras

Published online by Cambridge University Press:  20 January 2009

Henrique Guzzo Jr
Affiliation:
Instituto de Matemática e Estatística, Universidade de Sāo Paulo, Caixa Postal 20570, 01452-990—Sāo Paulo, Brazil E-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We generalize the classical example, due to Abraham, of a train algebra that is not special train, to non necessarily commutative right nil algebras of index n.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1994

References

REFERENCES

1.Abraham, V. M., A note on train algebras, Proc. Edinburgh Math. Soc. 20(2) (1976), 5358.CrossRefGoogle Scholar
2.Costa, R. and Guzzo, H. Jr, Indecomposable baric algebras, Linear Algebra Appl. 183 (1993), 223236.CrossRefGoogle Scholar
3.Costa, R. and Guzzo, H. Jr, Indecomposable baric algebras, II, Linear Algebra Appl., to appear.Google Scholar
4.Etherington, I. M. H., Genetic Algebras, Proc. Roy. Soc. Edinburgh 59 (1939), 242258.CrossRefGoogle Scholar
5.Holgate, P., A train algebra that is not special triangular, Arch. Math. 50 (1988), 122124.CrossRefGoogle Scholar
6.Schafer, R. D., An introduction to nonassociative algebras (Academic Press, New York, 1966).Google Scholar
7.Suttles, D., A counterexample to a conjecture of Albert, Notices Amer. Math. Soc. A19 (1972), 566.Google Scholar
8.Wörz, A., Algebras in Genetics (Lecture Notes in Biomathematics 36, Springer, Berlin—Heidelberg—New York, 1980).CrossRefGoogle Scholar