Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T08:34:54.388Z Has data issue: false hasContentIssue false

The efficiency of standard wreath product

Published online by Cambridge University Press:  20 January 2009

A. Sinan Çevik
Affiliation:
Balikesir Universitesi, Fen-Edebiyat Fakultesi, Matematik Bolumu, 10100 Balikesir, Turkey
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let ξ be the set of all finite groups that have efficient presentations. In this paper we give sufficient conditions for the standard wreath product of two ξ-groups to be a ξ-group.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2000

References

1. B Ahmad, A. G., The unsolvability of efficiency for groups, Southeast Asian Bull. Math. 22 (1998), 331336.Google Scholar
2. Ayik, H., Campbell, C. M., O'Connor, J. J. and Ruškuc, N., On the efficiency of wreath products of groups, Preprint, University of St Andrews (1998).Google Scholar
3. Baik, Y. G., Generators of the second homotopy module of group presentations with applications, PhD thesis, University of Glasgow (1992).Google Scholar
4. Baik, Y. G. and Pride, S. J., On the efficiency of Coxeter groups, Bull. Lond. Math. Soc. 29 (1997), 3236.CrossRefGoogle Scholar
5. Baik, Y. G. and Pride, S. J., Generators of second homotopy modules of presentations arising from group constructions, Preprint, University of Glasgow (1993).Google Scholar
6. Beyl, F. R., The Schur-multiplicator of metacyclic groups, Proc. Am. Math. Soc. 40 (1973), 413418.CrossRefGoogle Scholar
7. Beyl, F. R. and Rosenberger, G., Efficient presentations of GL(2,z) and PGL(2,z) (ed. Robertson, E. F. and Campbell, C. M.), Groups—St Andrews 1985, London Mathematical Society Lecture Notes, vol. 121, pp. 135137 (Cambridge University Press, 1986).Google Scholar
8. Beyl, F. R. and Tappe, J., Group extensions, representations and the Schur multiplicator, Lecture Notes in Mathematics, vol. 958 (Springer, 1982).CrossRefGoogle Scholar
9. Campbell, C. M., Robertson, E. F. and Williams, P. D., Efficient presentations for finite simple groups and related groups (ed. Kim, A. C. and Neumann, B. H.), Groups—Korea 1988, Lecture Notes in Mathematics, vol. 1398, pp. 6572 (Springer, 1989).Google Scholar
10. Campbell, C. M., F Robertson, E. and Williams, P. D., On the efficieny of some direct powers of groups (ed. Kovacs, L. G.), Groups—Canberra 1989, Lecture Notes in Mathematics, vol. 1456, pp. 106113 (Springer, 1990).Google Scholar
11. Çevik, A. S., Minimality of group and monoid presentations, PhD thesis, University of Glasgow (1997).Google Scholar
12. Epstein, D. B. A., Finite presentations of groups and 3-manifolds, Q. J. Math. Oxford 12 (1961), 205212.CrossRefGoogle Scholar
13. Harlander, J., Embeddings into efficient groups, Proc. Edinb. Math. Soc. 40 (1997), 313324.CrossRefGoogle Scholar
14. Harlander, J., Closing the relation gap by direct-product stabilization, J. Alg. 182 (1996), 511521.CrossRefGoogle Scholar
15. Johnson, D. L., Presentation of groups, London Mathematical Society Lecture Notes Series, vol. 22 (Cambridge University Press, 1976).Google Scholar
16. Johnson, D. L., Minimal relations for certain wreath products of groups, Can. J. Math. XXII (1970), 10051009.CrossRefGoogle Scholar
17. Johnson, D. L. and Robertson, E. F., Finite groups of deficiency zero, in Homological group theory (ed. Wall, C. T. C.), London Mathematical Society Lecture Notes Series, vol. 36, pp. 275289 (Cambridge University Press, 1979).CrossRefGoogle Scholar
18. Karpilovsky, G., The Schur multiplier, London Mathematical Society Monograms New Series 2 (Oxford Science Publications, 1987).Google Scholar
19. Kenne, P. E., Some new efficient soluble groups, Comm. Alg. 18 (1990), 27472753.CrossRefGoogle Scholar
20. Kovacs, L. G., Finite groups with trivial multiplicator and large deficiency (ed. Kim, A. C. and Johnson, D. L.), Groups—Korea 1994, pp. 277284 (Walter de Gruyter, 1995).Google Scholar
21. Lustig, M., Fox ideals, N-torsion and applications to groups and 3-manifolds, in Two-dimensional homotopy and combinatorial group theory (ed. Hog-Angeloni, C., Metzler, W. and Sieradski, A. J.), pp. 219250 (Cambridge University Press, 1993).CrossRefGoogle Scholar
22. Neumann, B. H., Some groups with trivial multiplicators, Publ. Math. Debrecen 4 (1955), 190194.CrossRefGoogle Scholar
23. Robertson, E. F., Thomas, R. M. and Wotherspoon, C. I., A class of inefficient groups with symmetric presentations (ed. Kim, A. C. and Johnson, D. L.), Groups—Korea 1994 (Walter de Gruyter, 1995).Google Scholar
24. Rotman, J. J., Theory of groups, 3rd edn (W. C. Brown, Iowa, 1988).Google Scholar
25. Swan, R. G., Minimal resolutions for finite groups, Topology 4 (1965), 193208.CrossRefGoogle Scholar
26. Wamsley, J. W., The deficiency of wreath products of groups, J. Alg. 27 (1973), 4856.CrossRefGoogle Scholar
27. Wamsley, J. W., The deficiency of metacyclic groups, Proc. Am. Math. Soc. 24 (1970), 724726.Google Scholar
28. Wamsley, J. W., Minimal presentations for finite groups, Bull. Lond. Math. Soc. 5 (1973), 129144.CrossRefGoogle Scholar
29. Wiegold, J., The Schur multiplier: an elementary approach (ed. Campbell, C. M. and Robertson, E. F.), Groups—St Andrews 1981, London Mathematical Society Lecture Note Series, vol. 71, pp. 137154 (Cambridge University Press, 1981).Google Scholar