Article contents
Distributive elements in centralizer near-rings
Published online by Cambridge University Press: 20 January 2009
Extract
Let <G,+> be a group with identity 0 and let S be a semigroup of endomorphisms of G. The set Ms(G)={f:G→G; f(0)=0, fσ=σf, for all σ∈S} with the operations of unction addition and composition is a zero-symmetric near-ring with identity called the centralizer near-ring determined by the pair (S, G). Centralizer near-rings have been studied for many classes of semigroups of endomorphisms. (See [8] and the references given there.) In this paper we continue these investigations into the structure of centralizer near-rings via our study of the relationship between distributive elements in Ms(G) and endomorphisms in Ms(G). More specifically, let N = Ms(G) and let Nd={f∈N; f(g1+g2)=fg1+fg2}, the set of distributive elements in N. Under the operation of function composition, Nd is a semigroup containing the identity map, id. Moreover, Nd contains as a submonoid = {α ∈ End G; ασ=σα for all σ∈S}. Here we determine for certain semigroups S, whether or not = Nd.
- Type
- Research Article
- Information
- Proceedings of the Edinburgh Mathematical Society , Volume 30 , Issue 3 , October 1987 , pp. 401 - 413
- Copyright
- Copyright © Edinburgh Mathematical Society 1987
References
REFERENCES
- 3
- Cited by