Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T17:30:16.020Z Has data issue: false hasContentIssue false

Differential inclusions with state constraints

Published online by Cambridge University Press:  20 January 2009

Nikolaos S. Papageorgiou
Affiliation:
Department of MathematicsUniversity of CaliforniaDavisCalifornia 95616U.S.A.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In “Viability Theory”, we select trajectories which are viable in the sense that they always satisfy a given constraint. Since the fundamental work of Nagumo [26], we know that in order to guarantee existence of viable trajectories, we need to satisfy certain tangential conditions. In the case of differential inclusions and using the modern terminology and notation of tangent cones, this condition takes the form F(t, x) ∩ TK#φ, where F(.,.) is the orientor field involved in the differential inclusion, K is the viability (constraint) set and TK(x) is the tangent cone to K at x. Results on the existence of viable solutions for differential inclusions can be found in Aubin–Cellina [2] and Papageorgiou [30,32].

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1989

References

REFERENCES

1.Aubin, J.-P., Slow and heavy viable trajectories of controlled problems. Smooth viability domains in: Multifunctions and Integrands (ed. Salinetti, G., Lecture Notes in Math., 1062, Springer, Berlin, 1984), 105116.CrossRefGoogle Scholar
2.Aubin, J.-P. and Cellina, A., Differential Inclusions (Springer, Berlin, 1984).CrossRefGoogle Scholar
3.Bressan, A., On differential relations with lower semi-continuous right hand side, J. Differential Equations 37 (1980), 8997.CrossRefGoogle Scholar
4.Brezis, H., Operateurs Maximaux Monotones (Math. Studies, 5, North Holland, Amsterdam, 1973).Google Scholar
5.Castaing, C. and Valadier, M., Convex Analysis and Measurable Multifunctions Lecture Notes in Math. 580, Springer, Berlin, 1977).CrossRefGoogle Scholar
6.Castaing, C., Equations differentielles. Rafle par un convexe aleatoire a variation continue a droite, C.R. Acad Sci. Paris 282, (1976), 515518.Google Scholar
7.Cellina, A. and Marchi, M., Nonconvex perturbations of maximal monotone differential inclusions, Israel J. Math. 46 (1983), 311.CrossRefGoogle Scholar
8.Cesari, L., Optimization-Theory and Applications, Appl Math. 17 (1983).Google Scholar
9.Clarke, F., Optimization and Nonsmooth Analysis (Wiley, New York, 1984).Google Scholar
10.Cornet, B., Existence of slow solutions for a class of differential inclusions, J. Math. Anal. Appl. 96 (1983), 130147.CrossRefGoogle Scholar
11.Daures, J. P., Un problem d'existence de commandes optimales avec liaison sur l'etat, Sem. Anal. Convexe, Montpellier 8 (1974).Google Scholar
12.DeBlasi, F., Characterizations of certain classes of semicontinuous multifunctions by continuous approximations, J. Math. Anal. Appl. 106 (1985), 118.CrossRefGoogle Scholar
13.DeBlasi, F. and Myjak, J., On the solution sets of differential inclusions, Bull. Polish Acad. Sci. Math. 33 (1985), 1723.Google Scholar
14.Delahaye, J. and Denel, J., The continuities of the point-to-set maps; definitions and equivalences, Math. Programming Study 10 (1979), 812.CrossRefGoogle Scholar
15.Dunford, N. and Schwartz, J., Linear Operators I (Wiley, New York, 1958).Google Scholar
16.Fryszkowski, A., Continuous selections for a class of nonconvex multivalued maps, Studia Math. 76 (1983), 163174.CrossRefGoogle Scholar
17.Gamal, A., Perturbations semi-continues superieurement de certaines equations d'evolution, Sem. Anal. Convexe 14 (1981).Google Scholar
18.Hiai, F. and Umegaki, H., Integrals, conditional expectations and martingales of multivalued mappings, J. Multivariate Anal. 7 (1977), 149182.CrossRefGoogle Scholar
19.Henry, C., An existence theorem for a class of differential equations with multivalued right hand side, J. Math. Anal. Appl. 41 (1973), 179186.CrossRefGoogle Scholar
20.Himmelberg, C., Measurable relations, Fund. Math 87 (1975), 5172.CrossRefGoogle Scholar
21.Kaczynski, H. and Olech, C., Existence of solutions of orientor fields with nonconvex right hand side, Ann. Polon. Math. 29 (1974), 6166.CrossRefGoogle Scholar
22.Kravvaritis, D. and Papageorgiou, N. S., Multivalued perturbations of subdifferential type evolution equation in Hilbert spaces, J. Differential Equations 75 (1988), in press.Google Scholar
23.Ladde, G. and Lakshmikantham, V., Random Differential Inequalities (Academic Press New York, 1980).Google Scholar
24.Lojasiewicz, S., The existence of solutions for lower semicontinuous orientor fields, Bull. Polish Acad. Sci. Math. 28 (1980), 483—487.Google Scholar
25.Moreau, J., Evolution problems associated with a moving convex set in a Hilbert space, J. Differential Equations 26 (1977), 347374.CrossRefGoogle Scholar
26.Nagumo, N., Uber die lage der integralkurven gewöhnlicher differential gleichungen, Proc. Phys-Math. Soc. Japan 24 (1942), 551559.Google Scholar
27.Papageorgiou, N. S., Random differential inclusions in Banach spaces, J. Differential Equations 65 (1986), 287303.CrossRefGoogle Scholar
28.Papageorgiou, N. S., A stability result for differential inclusions in Banach spaces, J. Math. Anal. Appl. 118 (1986), 232246.CrossRefGoogle Scholar
29.Papageorgiou, N. S., Existence theorems for differential inclusions with nonconvex right hand side, Internat. J. Math. Math. Sci. 9 (1986), 459469.CrossRefGoogle Scholar
30.Papageorgiou, N. S., Flow invariance and viability for differential inclusions, Appl. Anal. 21 (1986), 235243.CrossRefGoogle Scholar
31.Papageorgiou, N. S., Convergence theorems for Banach space valued integrable multifunctions, Internat. J. Math Math. Sci. 10, (1987), 433442.CrossRefGoogle Scholar
32.Papageorgiou, N. S., Viable and periodic trajectories for differential inclusions in Banach spaces, Kobe J. Math. 5 (1988), 2942.Google Scholar
33.Papageorgiou, N. S., Functional-differential inclusions in Banach spaces with nonconvex right hand side, Funkcial Ekvac., to appear.Google Scholar
34.Papageorgiou, N. S., Random fixed point theorems for measurable multifunctions in Banach spaces, Proc. Amer. Math. Soc. 97 (1986), 507514.CrossRefGoogle Scholar
35.Rockafellar, R. T., Convex Analysis (Princeton Univ. Press, Princeton, 1970).CrossRefGoogle Scholar
36.Salinetti, G. and Wets, R., On the convergence of sequences of convex sets in finite dimensions, SIAM. Rev. 21 (1979), 1833.CrossRefGoogle Scholar
37.Tsokos, C. and Padgett, W., Random Integral Equations with Applications to Life Sciences and Engineering (Academic Press, New York, 1974).Google Scholar
38.Wagner, D., Survey of measurable selection theorems, SIAM J. Control Optim. 15 (1977), 859903.CrossRefGoogle Scholar