No CrossRef data available.
Article contents
Differential Graded Quivers of Smooth Rational Surfaces
Published online by Cambridge University Press: 15 December 2016
Abstract
Let X be a smooth rational surface. We calculate a differential graded (DG) quiver of a full exceptional collection of line bundles on X obtained by an augmentation from a strong exceptional collection on the minimal model of X. In particular, we calculate canonical DG algebras of smooth toric surfaces.
- Type
- Research Article
- Information
- Proceedings of the Edinburgh Mathematical Society , Volume 60 , Issue 4 , November 2017 , pp. 859 - 876
- Copyright
- Copyright © Edinburgh Mathematical Society 2017
References
1.
Bodzenta, A., DG categories and exceptional collections, Proc. Am. Math. Soc.
143(5) (2015), 1909–1923.Google Scholar
2.
Bondal, A. I., Representations of associative algebras and coherent sheaves, Izv. Akad. Nauk SSSR Ser. Mat.
53(1) (1989), 25–44.Google Scholar
3.
Bondal, A. I. and Kapranov, M. M., Framed triangulated categories, Mat. Sb.
181(5) (1990), 669–683.Google Scholar
4.
Bridgeland, T., T-structures on some local Calabi–Yau varieties, J. Alg.
289(2) (2006), 453–483.Google Scholar
5.
Fulton, W., Introduction to toric varieties, Annals of Mathematics Studies, Volume 131 (Princeton University Press, 1993).Google Scholar
6.
Hille, L. and Perling, M., Exceptional sequences of invertible sheaves on rational surfaces, Compositio Math.
147(4) (2011), 1230–1280.Google Scholar
7.
Hille, L. and Perling, M., Tilting bundles on rational surfaces and quasi-hereditary algebras, Annales Inst. Fourier
64(2) (2014), 625–644.Google Scholar
8.
Orlov, D. O., Projective bundles, monoidal transformations, and derived categories of coherent sheaves, Izv. Akad. Nauk SSSR Ser. Mat.
56(4) (1992), 852–862.Google Scholar
9.
Seidel, T., Homological mirror symmetry for the quartic surface, Preprint (arXiv:math/0310414 [math.SG]; 2003).Google Scholar