Article contents
COUNTABLE VERSUS UNCOUNTABLE RANKS IN INFINITE SEMIGROUPS OF TRANSFORMATIONS AND RELATIONS
Published online by Cambridge University Press: 10 December 2003
Abstract
The relative rank $\rank(S:A)$ of a subset $A$ of a semigroup $S$ is the minimum cardinality of a set $B$ such that $\langle A\cup B\rangle=S$. It follows from a result of Sierpiński that, if $X$ is infinite, the relative rank of a subset of the full transformation semigroup $\mathcal{T}_{X}$ is either uncountable or at most $2$. A similar result holds for the semigroup $\mathcal{B}_{X}$ of binary relations on $X$.
A subset $S$ of $\mathcal{T}_{\mathbb{N}}$ is dominated (by $U$) if there exists a countable subset $U$ of $\mathcal{T}_{\mathbb{N}}$ with the property that for each $\sigma$ in $S$ there exists $\mu$ in $U$ such that $i\sigma\le i\mu$ for all $i$ in $\mathbb{N}$. It is shown that every dominated subset of $\mathcal{T}_{\mathbb{N}}$ is of uncountable relative rank. As a consequence, the monoid of all contractions in $\mathcal{T}_{\mathbb{N}}$ (mappings $\alpha$ with the property that $|i\alpha-j\alpha|\le|i-j|$ for all $i$ and $j$) is of uncountable relative rank.
It is shown (among other results) that $\rank(\mathcal{B}_{X}:\mathcal{T}_{X})=1$ and that $\rank(\mathcal{B}_{X}:\mathcal{I}_{X})=1$ (where $\mathcal{I}_{X}$ is the symmetric inverse semigroup on $X$). By contrast, if $\mathcal{S}_{X}$ is the symmetric group, $\rank(\mathcal{B}_{X}:\mathcal{S}_{X})=2$.
AMS 2000 Mathematics subject classification: Primary 20M20
- Type
- Research Article
- Information
- Proceedings of the Edinburgh Mathematical Society , Volume 46 , Issue 3 , October 2003 , pp. 531 - 544
- Copyright
- Copyright © Edinburgh Mathematical Society 2003
- 20
- Cited by