Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-10T19:11:28.721Z Has data issue: false hasContentIssue false

Γ-Convergence of Inhomogeneous Functionals in Orlicz–Sobolev Spaces

Published online by Cambridge University Press:  05 January 2015

Marian Bocea
Affiliation:
Department of Mathematics and Statistics, Loyola University Chicago, 1032 West Sheridan Road, Chicago, IL 60660, USA, ([email protected])
Mihai Mihăilescu
Affiliation:
Department of Mathematics, University of Craiova, 200585 Craiova, Romania, ([email protected]) ‘Simion Stoilow’ Institute of Mathematics of the Romanian Academy, PO Box 1-764, 014700 Bucharest, Romania

Abstract

The asymptotic behaviour of inhomogeneous power-law type functionals is undertaken via De Giorgi’s Γ-convergence. Our results generalize recent work dealing with the asymptotic behaviour of power-law functionals acting on fields belonging to variable exponent Lebesgue and Sobolev spaces to the Orlicz–Sobolev setting.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Adams, R., Sobolev spaces (Academic Press, 1975)Google Scholar
2.Adams, D. R. and Hedberg, L. I., Function spaces and potential theory, Grundlehren der Mathematischen Wissenschaften, Volume 314 (Springer, 1996).CrossRefGoogle Scholar
3.Bocea, M. and Mihăilescu, M., Γ-convergence of power-law functionals with variable exponents, Nonlin. Analysis 73 (2010), 110121.CrossRefGoogle Scholar
4.Bocea, M. and Nesi, V., Γ-convergence of power-law functionals, variational principles in L , and applications, SIAM J. Math. Analysis 39 (2008), 15501576.CrossRefGoogle Scholar
5.Bocea, M. and Popovici, C., Variational principles in L with applications to antiplane shear and plane stress plasticity, J. Convex Analysis 18(2) (2011), 403416.Google Scholar
6.Bocea, M., Mihăilescu, M. and Popovici, C., On the asymptotic behavior of variable exponent power-law functionals and applications, Ric. Mat. 59(2) (2010), 207238.CrossRefGoogle Scholar
7.Clément, Ph., de Pagter, B., Sweers, G. and de Thélin, F., Existence of solutions to a semilinear elliptic system through Orlicz-Sobolev spaces, Mediterr. J. Math. 1 (2004), 241267.CrossRefGoogle Scholar
8.Clément, Ph., García-Huidobro, M., Manásevich, R. and Schmitt, K., Mountain pass type solutions for quasilinear elliptic equations, Calc. Var. PDEs 11 (2000), 3362.CrossRefGoogle Scholar
9.Dal Maso, G., An introduction to Γ-convergence, Progress in Nonlinear Differential Equations and Their Applications, Volume 8 (Birkäuser, 1993).Google Scholar
10.De Giorgi, E., Sulla convergenza di alcune succesioni di integrali del tipo dell’area, Rend. Mat. 8 (1975), 277294.Google Scholar
11.De Giorgi, E. and Franzoni, T., Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975), 842850.Google Scholar
12.Fukagai, N., Ito, M. and Narukawa, K., Positive solutions of quasilinear elliptic equations with critical Orlicz-Sobolev nonlinearity on ℝN, Funkcial. Ekvac. 49 (2006), 235267.CrossRefGoogle Scholar
13.García-Huidobro, M., Le, V. K., Manásevich, R. and Schmitt, K., On principal eigenvalues for quasilinear elliptic differential operators: an Orlicz-Sobolev space setting, Nonlin. Diff. Eqns Applic. 6 (1999), 207225.CrossRefGoogle Scholar
14.Garroni, A., Nesi, V. and Ponsiglione, M., Dielectric breakdown: optimal bounds, Proc. R. Soc. Lond. A 457 (2001), 23172335.CrossRefGoogle Scholar
15.Gossez, J. P., Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Am. Math. Soc. 190 (1974), 163205.CrossRefGoogle Scholar
16.Kohn, R. V. and Little, T. D., Some model problems of polycrystal plasticity with deficient basic crystals, SIAM J. Appl. Math. 59 (1999), 172197.CrossRefGoogle Scholar
17.Mihăilescu, M. and Rădulescu, V., Eigenvalue problems associated to nonhomogeneous differential operators in Orlicz-Sobolev spaces, Analysis Applic. 6(1) (2008), 116.CrossRefGoogle Scholar
18.Mihăilescu, M. and Rădulescu, V., Neumann problems associated to nonhomogeneous differential operators in Orlicz-Sobolev spaces, Annales Inst. Fourier 58(6) (2008), 20872111.CrossRefGoogle Scholar
19.Musielak, J., Orlicz spaces and modular spaces, Lecture Notes in Mathematics, Volume 1034 (Springer, 1983).CrossRefGoogle Scholar
20.Rao, M. M. and Ren, Z. D., Theory of Orlicz spaces (Marcel Dekker, New York, 1991).Google Scholar