No CrossRef data available.
Published online by Cambridge University Press: 20 January 2009
Relative uniform limits need not be unique in a non-archimedean partially ordered group, and order convergence need not imply metric convergence in a Banach lattice. We define a new type of convergence on partially ordered groups (R-convergence), which implies both the previous ones, and does not have these defects. Further R-convergence is equivalent to relative uniform convergence on divisible directed integrally closed partially ordered groups, and to order convergence on fully ordered groups.