Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T17:38:40.375Z Has data issue: false hasContentIssue false

Commutators in Banach algebras

Published online by Cambridge University Press:  20 January 2009

Vlastimil Pták
Affiliation:
Czechoslovak Academy of Sciences, Institute of Mathematics, 115-67 Praha 1, Czechoslovakia
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In a recent paper (6) the present author has shown that, for an element a of a Banach algebra A, the condition

for all xA and some constant α is equivalent to [x, a]∈Rad a for all xA; it turns out that α may be replaced by |α|σ It is the purpose of the present note to investigate a related condition

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1979

References

REFERENCES

(1) Aupetit, B., Caractérisation spectrale des algèbres de Banach commutatives, Pacific J. Math., 63 (1976), 2335.CrossRefGoogle Scholar
(2) Hirschfeld, R. A., and Zelazko, W., On the spectral norm Banach algebras, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 16, (1968) 195199.Google Scholar
(3) Le Page, C., Sur quelques conditions entrainant la commutativité dans les algébres de Banach, C. R. Acad. Sci. Paris 265, (1967) 235237.Google Scholar
(4) PtáK, V., and Zemánek, J., Continuié lipschitzienne du spectre comme fonction d'un opérateur normal, Comment. Math. Univ. Carolinae 17, (1976), 507512.Google Scholar
(5) PtáK, V., and Zemánek, J., Uniform continuity of the spectral radius in Banach algebras, Manuscripta math. 20 (1977), 177189.CrossRefGoogle Scholar
(6) Pták, V., Derivations, commutators and the radical, Manuscripta math. 23 (1978), 355362.CrossRefGoogle Scholar
(7) Rosenblum, M., On a theorem of Fuglede and Putnam, J. Lond. Math. Soc. 33 (1958), 367377.Google Scholar
(8) Singer, I. M., and Wermer, J., Derivations on commutative normed algebras, Math. Ann. 129 (1955), 260264.CrossRefGoogle Scholar
(9) Slodkowski, Z., WojtyńSki, W., and Zemánek, J., A note on quasinilpotent elements of a Banach algebra, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 25 1977), 131134.Google Scholar
(10) Širokov, F. V., Proof of a conjecture of Kaplansky, Uspechi Mat. Nauk 11 (1956), 167168.Google Scholar
(11) Vesentini, E., On the subharmonicity of the spectral radius, Boll. Unione Mat. Hal. 4 1968), 427429.Google Scholar
(12) Zemánek, J., Spectral radius characterizations of commutativity in Banach algebras, Studia Math. 61 (1977), 257268.CrossRefGoogle Scholar
(13) ZemáNek, J., A note on the radical of a Banach algebra, Manuscripta math. 20 (1977), 191196.CrossRefGoogle Scholar
(14) Zemánek, J., Spectral characterisation of two-sided ideals in Banach algebras, Studia Math., In print.Google Scholar