Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T22:33:04.640Z Has data issue: false hasContentIssue false

A class of nonlinear elliptic problems with nonconvex constraints and applications

Published online by Cambridge University Press:  20 January 2009

N. Chemetov
Affiliation:
Departamento de Matemática, Universidade Independente, Av. Marechal Gomes da Costa, 9 P-1800 Lisboa, Portugal
J. F. Rodrigues
Affiliation:
Centro de Matemática e Apliçacōes Fundamentais, Universidade de Lisboa, Av. Prof. Gama Pinto, 2 P-1699 Lisboa Codex, Portugal
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Conditions for the existence of solutions of a class of elliptic problems with nonconvex constraints are given in the general framework of pseudo-monotone operators. Applications are considered in unilateral problems of free boundary type, yielding the solvability of a Reynold's lubrication model and of a biological population problem with nonlocal terms and global constraints.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1998

References

REFERENCES

1.Berestyki, H., Coron, J. M. and Ekeland, I. E. (Editors), Variational Methods (Birkhäuser, Boston, 1990).CrossRefGoogle Scholar
2.Brézis, H., Équations et inequations nonlinéaires dans les espaces vectoriels en dualité, Ann. Inst. Fourier (Grenoble) 18 (1968), 115175.CrossRefGoogle Scholar
3.Chipot, M. and Michaile, G., Uniqueness results and monotonicity properties for strongly nonlinear elliptic variational inequalities, Ann. Scuola Norm. Sup. Pisa 16 (1989), 137166.Google Scholar
4.Duvaut, G. and Lions, J. L., Inequalities in Mechanics and Physics (Springer-Verlag, Berlin, 1976).CrossRefGoogle Scholar
5.Gilbarg, D. and Trudinger, N. S., Elliptic Partial Differential Equations of Second Order, 2nd ed. (Springer-Verlag, Berlin, 1983).Google Scholar
6.Hamilton, W. D., Geometry for the selfish herd, J. Theoret. Biol. 31 (1971), 295311.CrossRefGoogle ScholarPubMed
7.Hu, B., A quasi-variational inequality arising in elastohydrodynamics, SIAM J. Math. Anal. 21 (1990), 1836.CrossRefGoogle Scholar
8.Kostreva, M. M., Pressure spikes and stability considerations in elastrohydrodynamic lubrication models, Trans. ASME - J. Tribology 106 (1984), 386391.CrossRefGoogle Scholar
9.Lions, J. L., Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires (Dunod, Paris, 1969).Google Scholar
10.Mimura, M., Some convection-diffusion equations arising in population dynamics, Contemp. Math. 17 (1983), 343351.CrossRefGoogle Scholar
11.Oden, J. T. and Wu, S. R., Existence of solutions to the Reynolds' equation of elastohydrodynamic lubrication, Internat. J. Engng. Sci. 23 (1985), 207215.CrossRefGoogle Scholar
12.Rodrigues, J. F., Obstacle Problems in Mathematical Physics (North-Holland, 1987).Google Scholar
13.Rodrigues, J. F., Some remarks in the quasi-linear noncoercive elliptic obstacle problem, Pitman Res. Notes Math. Ser. 208 (1989), 319332.Google Scholar
14.Rodrigues, J. F., Remarks on the Reynolds problem of elastohydrodynamic problem, European J. Appl. Math. 4 (1993), 8396.CrossRefGoogle Scholar
15.Zeidler, E., Nonlinear Functional Analysis and its Applications, Vol III – Variational Methods and Optimization (Springer-Verlag, New York, 1985).Google Scholar