Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T07:34:36.082Z Has data issue: false hasContentIssue false

Chern characters, reduced ranks and -modules on the flag variety

Published online by Cambridge University Press:  20 January 2009

T. J. Hodges
Affiliation:
Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio 45221-0025, USA E-mail address: [email protected]
M. P. Holland
Affiliation:
School of Mathematics and Statistics, Pure Mathematics Section, Sheffield University, Sheffield S3 7RH, UK E-mail address: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let D be the factor of the enveloping algebra of a semisimple Lie algebra by its minimal primitive ideal with trival central character. We give a geometric description of the Chern character ch: K0(D)→HC0(D) and the state (of the maximal ideal m) s: K0(D)→K0(D/m) = ℤ in terms of the Euler characteristic χ:K0()→ℤ, where is the associated flag variety.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1994

References

REFERENCES

1.Angéniol, B. and Lejeune-Jalabert, M., Le théorème de Riemann-Roch singulier pour les -modules, Systèmes Différentiels et Singularités(Astérisque 130, Soc. Math, de France, 1985).Google Scholar
2.Beilinson, A. and Bernstein, J., Localisation de g-modules, C. R. Acad. Sc. Paris 292 (1981), 1518.Google Scholar
3.Borel, A. et al. , Algebraic D-modules, in Perspectives in Mathematics (Academic Press, Boston, 1987).Google Scholar
4.Borho, W. and Brylinski, J.-L., Differential Operators on Homogeneous Spaces I, Invent. Math. 69 (1982), 437476.Google Scholar
5.Borho, W. and Brylinski, J.-L., Differential Operators on Homogeneous Spaces III, Invent. Math. 80 (1985), 168.CrossRefGoogle Scholar
6.Hartshorne, R., Algebraic Geometry (Graduate Texts in Math. 52, Springer-Verlag, New York, 1977.Google Scholar
7.Hodges, T. J., K-theory of D-modules and primitive factors of enveloping algebras of semisimple Lie algebras, Bull. Sci. Math. 113 (1989), 8588.Google Scholar
8.Hodges, T. J. and Smith, S. P., The global dimension of certain primitive factors of the enveloping algebra of a semisimple Lie algebra, J. London Math. Soc. 82 (1985), 411418.Google Scholar
9.Karoubi, M., Homologie cyclique et K-théorie (149, Astérisque, 1987).Google Scholar
10.Shelton, B., The global dimension of rings of differential operators on projective spaces, Bull London Math. Soc. 24 (1992), 148158.CrossRefGoogle Scholar