Article contents
Brauer indecomposability of Scott modules with semidihedral vertex
Published online by Cambridge University Press: 04 May 2021
Abstract
We present a sufficient condition for the $kG$-Scott module with vertex $P$ to remain indecomposable under the Brauer construction for any subgroup $Q$ of $P$ as $k[Q\,C_G(Q)]$-module, where $k$ is a field of characteristic $2$, and $P$ is a semidihedral $2$-subgroup of a finite group $G$. This generalizes results for the cases where $P$ is abelian or dihedral. The Brauer indecomposability is defined by R. Kessar, N. Kunugi and N. Mitsuhashi. The motivation of this paper is the fact that the Brauer indecomposability of a $p$-permutation bimodule (where $p$ is a prime) is one of the key steps in order to obtain a splendid stable equivalence of Morita type by making use of the gluing method due to Broué, Rickard, Linckelmann and Rouquier, that then can possibly be lifted to a splendid derived (splendid Morita) equivalence.
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © The Author(s) 2021. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society
References
- 2
- Cited by