Article contents
Boundary problems for Riccati and Lyapunov equations
Published online by Cambridge University Press: 20 January 2009
Extract
The resolution problem of the system
where U(t), A, B, D and Uo are bounded linear operators on H and B* denotes the adjoint operator of B, arises in control theory, [9], transport theory, [12], and filtering problems, [3]. The finite-dimensional case has been introduced in [6,7], and several authors have studied the infinite-dimensional case, [4], [13], [18]. A recent paper, [17],studies the finite dimensional boundary problem
where t ∈[0,b].In this paper we consider the more general boundary problem
where all operators which appear in (1.2) are bounded linear operators on a separable Hilbert space H. Note that we do not suppose C = −B* and the boundary condition in (1.2) is more general than the boundary condition in (1.1).
- Type
- Research Article
- Information
- Proceedings of the Edinburgh Mathematical Society , Volume 29 , Issue 1 , February 1986 , pp. 15 - 21
- Copyright
- Copyright © Edinburgh Mathematical Society 1986
References
REFERENCES
- 8
- Cited by