Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T17:44:50.357Z Has data issue: false hasContentIssue false

Analytic functions with decreasing coefficients and Hardy and Bloch spaces

Published online by Cambridge University Press:  26 July 2012

Miroslav Pavlović*
Affiliation:
Faculty of Mathematics, University of Belgrade, Studentski trg 16, 11001 Beograd, PO Box 550, Serbia ([email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The following rather surprising result is noted.

(1) A function f(z) = ∑anzn such that an ↓ 0 (n → ∞) belongs to H1 if and only if ∑(an/(n + 1)) < ∞.

A more subtle analysis is needed to prove that assertion (2) remains true if H1 is replaced by the predual, 1(⊂ H1), of the Bloch space. Assertion (1) extends the Hardy–Littlewood theorem, which says the following.

(2) f belongs to Hp (1 < p < ∞) if and only if ∑(n + 1)p−2anp < ∞.

A new proof of (2) is given and applications of (1) and (2) to the Libera transform of functions with positive coefficients are presented. The fact that the Libera operator does not map H1 to H1 is improved by proving that it does not map 1 into H1.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2013

References

1.Blasco, O. and Pavlović, M., Coefficient multipliers on Banach spaces of analytic functions, Rev. Mat. Ibero. 27(2) (2011), 415447.CrossRefGoogle Scholar
2.Danikas, N., Ruscheweyh, S. and Siskakis, A., Metrical and topological properties of a generalized Libera transform, Arch. Math. 63(6) (1994), 517524.CrossRefGoogle Scholar
3.Duren, P. L., Theory of Hp spaces, Pure and Applied Mathematics, Volume 38 (Academic Press, New York, 1970).Google Scholar
4.Flett, T. M., Lipschitz spaces of functions on the circle and the disc, J. Math. Analysis Applic. 39 (1972), 125158.CrossRefGoogle Scholar
5.Girela, D., Pavlović, M. and Peláez, J. A., Spaces of analytic functions of Hardy—Bloch type, J. Analyse Math. 100 (2006), 5383.CrossRefGoogle Scholar
6.Hardy, G. H. and Littlewood, J. E., Some new properties of Fourier constants, J. Lond. Math. Soc. 6 (1931), 39.CrossRefGoogle Scholar
7.Hardy, G. H. and Littlewood, J. E., Some properties of fractional integrals, II, Math. Z. 34 (1932), 403439.CrossRefGoogle Scholar
8.Jevtić, M.; and Pavlović, M., On multipliers from Hp to lq (0 <q <p < 1), Arch. Math. 56 (1991), 174180.CrossRefGoogle Scholar
9.Jevtić, M. and Pavlović, M., Coefficient multipliers on spaces of analytic functions, Acta Sci. Math. (Szeged) 64 (1998), 531545.Google Scholar
10.Libera, R. J., Some classes of regular univalent functions, Proc. Am. Math. Soc. 16 (1965), 755758.CrossRefGoogle Scholar
11.Lindenstrauss, J. and Tzafriri, L., Classical Banach spaces, I, Sequence spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Volume 92 (Springer, 1977).Google Scholar
12.Littlewood, J. E. and Paley, R. E. A. C., Theorems on Fourier series and power series, II, Proc. Lond. Math. Soc. 42 (1936), 5289.Google Scholar
13.Mateljević, M. and Pavlović, M., Lp-behavior of power series with positive coefficients and Hardy spaces, Proc. Am. Math. Soc. 87(2) (1983), 309316.Google Scholar
14.Mateljević, M. and Pavlović, M., Lp behaviour of the integral means of analytic functions, Studia Math. 77 (1984), 219237.CrossRefGoogle Scholar
15.Nowak, M. and Pavlović, M., On the Libera operator, J. Math. Analysis Applic. 370(2) (2010), 588599.CrossRefGoogle Scholar
16.Pavlović, M., Introduction to function spaces on the disk, Posebna izdanja (Special Editions), Volume 20 (Matematički institut u Beogradu, 2004).Google Scholar
17.Pavlović, M., A short proof of an inequality of Littlewood and Paley, Proc. Am. Math. Soc. 134 (2006), 36253627.CrossRefGoogle Scholar
18.Ruscheweyh, S. and Siskakis, A., Corrigendum to ‘Metrical and topological properties of a generalized Libera transform’ [Arch. Math. 63 (1994), 517524], Arch. Math. 91(3) (2008), 254–255.Google Scholar
19.Shields, A. L. and Williams, D. L., Bounded projections, duality and multipliers in spaces of analytic functions, Trans. Am. Math. Soc. 162 (1971), 287302.Google Scholar
20.Siskasis, A. G., Composition semigroups and the Cesàro operator on Hp, J. Lond. Math. Soc. 36(2) (1987), 153164.CrossRefGoogle Scholar
21.Siskasis, A. G., Semigroups of composition operators in Bergman spaces, Bull. Austral. Math. Soc. 35 (1987), 397406.CrossRefGoogle Scholar
22.Xiao, J., Holomorphic Q classes, Lecture Notes in Mathematics, Volume 1767 (Springer, 2001).CrossRefGoogle Scholar
23.Zygmund, A., Trigonometric series, 2nd edn, Volumes I and II (Cambridge University Press, 1959).Google Scholar