No CrossRef data available.
Published online by Cambridge University Press: 20 January 2009
Let f(z) be represented on its circle of convergence |z| = 1 by the Taylor series
and suppose that its sole singularity on |z| = 1 is an almost isolated singularity at z = 1. In the neighbourhood of such a singularity f(z) is regular on a sufficiently small disk, centre z = 1, with the outward drawn radius along the positive real axis excised. If also in this neighbourhood |f(z)| e−(1/δ)ρ remains bounded for some finite ρ, where δ is the distance from the excised radius, then the singularity is said to be of finite exponential order.