Published online by Cambridge University Press: 20 January 2009
A binary form of odd degree,
has a quadratic covariant Г, (ab2maxbx in Aronhold's notation, and the discriminant Δ of Г is an invariant of ƒ For m = 2Δ was obtained by Cayley in 1856 [3, p. 274]; it was curiosity as to how Δ could be interpreted geometrically that triggered the writing of this note. An interpretation, in projective space [2m + 1], that does not seem to be on record, of Γ and Δ is found below. If m = 1 one has merely the Hessian and discriminant of a binary cubic whose interpretations in the geometry of the twisted cubic are widely known [5, pp. 241–2].