We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
Article purchase
Temporarily unavailable
References
(1)
Brannan, D. A. and Kirwan, W. E., On some classes of bounded univalent functions, J. London Math. Soc.2(1): (1969), 431–443.CrossRefGoogle Scholar
(2)
Cho, N. E., Kowalczyk, B., Kwon, O. S., Lecko, A. and Sim, Y. J., The bound of the Hankel determinant for strongly starlike functions of order alpha, J. Math. Inequal.11(2), (2017), 429–439.CrossRefGoogle Scholar
(3)
Cho, N. E., Kowalczyk, B. and Lecko, A., Sharp bounds of some coefficient functionals over the class of functions convex in the direction of the imaginary axis, Bull. Aust. Math. Soc.100(1), (2019), 86–96.CrossRefGoogle Scholar
(4)
Choi, J. H., Kim, Y. C. and Sugawa, T., A general approach to the Fekete–Szegö problem, J. Math. Soc. Japan.59(3), (2007), 707–727.CrossRefGoogle Scholar
(5)
Duren, P. L., Univalent Functions (Springer-Verlag, 1983).Google Scholar
(6)
Goodman, A. W., Univalent Functions (Mariner Publishing Company, Inc., Tampa, Florida, 1983).Google Scholar
(7)
Jameson, G. J. O., Counting zeros of generalized polynomials: Descartes’ rule of signs and Laguerre’s extensions, Math. Gazette90(518), (2006), 223–234.CrossRefGoogle Scholar
(8)
Kowalczyk, B. and Lecko, A., Second Hankel determinant of logarithmic coefficients of convex and starlike functions, Bull. Aust. Math. Soc.105(3), (2022), 458–467.CrossRefGoogle Scholar
(9)
Kowalczyk, B. and Lecko, A., Second Hankel determinant of logarithmic coefficients of convex and starlike functions of order alpha, Bull. Malays. Math. Sci. Soc.45(2), (2022), 727–740.CrossRefGoogle Scholar
(10)
Kowalczyk, B., Lecko, A. and Sim, Y. J., The sharp bound for the Hankel determinant of the third kind for convex functions, Bull. Aust. Math. Soc.97(3), (2018), 435–445.CrossRefGoogle Scholar
(11)
Kowalczyk, B., Lecko, A. and Thomas, D. K., The sharp bound of the third Hankel determinant for starlike functions, Forum Math.34(5), (2022), 1249–1254.Google Scholar
(12)
Laguerre, E. N., Sur la théeorie des équations numériques, J. Math. Pures Appl.9 (1883), 99–146. Oeuvres de Laguerre Vol. 1, Paris, 1898, 3–47.Google Scholar
(13)
Lecko, A., Some Methods in the Theory of Univalent Functions (Oficyna Wydawnicza Poltechniki Rzeszowskiej, Rzeszów, 2005).Google Scholar
(14)
Lecko, A., Strongly starlike and spirallike functions, Ann. Polon. Math.85(2), (2005), 165–192.CrossRefGoogle Scholar
(15)
Ma, W. and Minda, D., An internal geometric characterization of strongly starlike functions, Ann. Univ. Mariae Curie Skłodowska Sect. A45(11), (1991), 89–97.Google Scholar
(16)
Milin, I. M., Univalent Functions and Orthonormal Systems, Nauka, Moscow, 1971 (in Russian); English Translation, Translations of Mathematical Monographs, 49 (American Mathematical Society, Providence, RI, 1977).Google Scholar
Stankiewicz, J., Quelques problèmes extrémaux dans les classes des fonctions α-angulairement étoilées, Ann. Univ. Mariae Curie Skłodowska Sect. A20(6), (1966), 59–75.Google Scholar
(19)
Stankiewicz, J., On a family of starlike functions, Ann. Univ. Mariae Curie Skłodowska Sect. A22–24(27), (1968-1970), 175–181.Google Scholar
(20)
Sugawa, T., A self-duality of strong starlikeness, Kodai Math. J.28(2), (2005), 382–389.CrossRefGoogle Scholar
(21)
Turowicz, A., Geometria zer wielomianów (Geometry of Zeros of Polynomials), Warszawa, PWN (1967) in Polish.Google Scholar