Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T04:42:26.738Z Has data issue: false hasContentIssue false

On the Bieri–Neumann–Strebel–Renz invariants of residually free groups

Published online by Cambridge University Press:  21 July 2020

Dessislava H. Kochloukova
Affiliation:
State University of Campinas, São Paulo, Brazil ([email protected])
Francismar Ferreira Lima
Affiliation:
Federal University of Technology, Paraná, Brazil ([email protected])

Abstract

We calculate the Bieri–Neumann–Strebel–Renz invariant Σ1(G) for finitely presented residually free groups G and show that its complement in the character sphere S(G) is a finite union of finite intersections of closed sub-spheres in S(G). Furthermore, we find some restrictions on the higher-dimensional homological invariants Σn(G, ℤ) and show for the discrete points Σ2(G)dis, Σ2(G, ℤ)dis and Σ2(G, ℚ)dis in Σ2(G), Σ2(G, ℤ) and Σ2(G, ℚ) that we have the equality Σ2(G)dis = Σ2(G, ℤ)dis = Σ2(G, ℚ)dis.

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alibegovic, E., A combination theorem for relatively hyperbolic groups, Bull. Lond. Math. Soc. 37(3) (2005), 459466.CrossRefGoogle Scholar
Almeida, K., The BNS-invariant for Artin groups of circuit rank 2, J. Group Theory 21(2) (2018), 189228.CrossRefGoogle Scholar
Almeida, K. and Kochloukova, D., The Σ1-invariant for Artin groups of circuit rank 1, Forum Math. 27(5) (2015), 29012925.CrossRefGoogle Scholar
Baumslag, B., Residually free groups, Proc. Lond. Math. Soc. 3–17(3) (1967), 402418.CrossRefGoogle Scholar
Baumslag, G. and Roseblade, J., Subgroups of direct products of free groups, J. Lond. Math. Soc. 30 (1984), 4452.CrossRefGoogle Scholar
Baumslag, G., Myasnikov, A. and Remeslennikov, V., Algebraic geometry over groups I: Algebraic sets and ideal theory, J. Algebra 219 (1999), 1679.CrossRefGoogle Scholar
Baumslag, G., Bridson, M. R., Miller, C. F. III and Short, H., Fibre products, non-positive curvature, and decision problems, Comment. Math. Helv. 75 (2000), 457477.CrossRefGoogle Scholar
Bestvina, M. and Brady, N., Morse theory and finiteness properties of groups, Invent. Math. 129 (1997), 445470.CrossRefGoogle Scholar
Bieri, R., Homological dimension of discrete groups, 2nd edn, Queen Mary College Mathematics Notes (Queen Mary College, University of London, 1981).Google Scholar
Bieri, R. and Geoghegan, R., Sigma invariants of direct products of groups, Groups Geom. Dyn. 4(2) (2010), 251261.CrossRefGoogle Scholar
Bieri, R. and Groves, J., The geometry of the set of characters induced by valuations, J. Reine Angew. Math. 347 (1984), 168195.Google Scholar
Bieri, R. and Renz, B., Valuations on free resolutions and higher geometric invariants of groups, Comment. Math. Helv. 3(63) (1988), 464497.CrossRefGoogle Scholar
Bieri, R. and Strebel, R., Valuations and finitely presented metabelian groups, Proc. Lond. Math. Soc. 41 (1980), 439464.CrossRefGoogle Scholar
Bieri, R., Neumann, W. D. and Strebel, R., A geometric invariant of discrete groups, Invent. Math. 90 (1987), 451477.CrossRefGoogle Scholar
Bieri, R., Geoghegan, R. and Kochloukova, D., The sigma invariants of Thompson's group F, Groups Geom. Dyn. 4(2) (2010), 263273.CrossRefGoogle Scholar
Bridson, M. R. and Howie, J., Normalisers in limit groups, Math. Ann. 337 (2007), 385394.CrossRefGoogle Scholar
Bridson, M. R., Howie, J., Miller, C. F. and Short, H., Subgroups of direct products of limit groups, Ann. of Math. 3(170) (2009), 14471467.CrossRefGoogle Scholar
Bridson, M. R., Howie, J., Miller, C. F. and Short, H., On the finite presentation of subdirect products and the nature of residually free groups, Amer. J. Math. 4(135) (2013), 891933.CrossRefGoogle Scholar
Dahmani, F., Combination of convergence groups, Geom. Topol. 7 (2003), 933963.CrossRefGoogle Scholar
Funke, F. and Kielak, D., Alexander and Thurston norms, and the Bieri-Neumann-Strebel invariants for free-by-cyclic groups, Geom. Topol. 22 (2018), 26472696.CrossRefGoogle Scholar
Gehrke, R., The higher geometric invariants for groups with sufficient commutativity, Comm. Algebra 26 (1998), 10971115.CrossRefGoogle Scholar
Goodearl, K. R. and Warfield, R. H., An introduction to non-commutative Noetherian rings, London Mathematical Society Student Texts (Cambridge University Press, Cambridge, 1989).Google Scholar
Hall, M. Jr., Subgroups of finite index in free groups, Canad. J. Math. 1 (1949), 187190.CrossRefGoogle Scholar
Kharlampovich, O. and Myasnikov, A., Elementary theory of free nonabelian groups, J. Algebra 302 (2006), 451552.CrossRefGoogle Scholar
Kielak, D., The Bieri–Neumann–Strebel invariants via Newton polytopes, preprint (arXiv 1802.07049).Google Scholar
Kochloukova, D. H., On subdirect products of type FP m of limit groups, J. Group Theory 10 (2010), 119.CrossRefGoogle Scholar
Kochloukova, D. H., On the Σ2-invariants of the generalised R. Thompson groups of type F, J. Algebra 371 (2012), 430456.CrossRefGoogle Scholar
Kochloukova, D. H. and Lima, F. F., Homological finiteness properties of fibre products, Q. J. Math. 69(3) (2018), 835854.CrossRefGoogle Scholar
Kochloukova, D. and Mendonça, L., On the Bieri–Neumann–Strebel–Renz invariants of coabelian subgroups, preprint.Google Scholar
Kuckuck, B., Subdirect products of groups and the n-(n + 1)-(n + 2) conjecture, Q. J. Math. 65(4) (2014), 12931318.CrossRefGoogle Scholar
Meier, J., Meinert, H. and VanWyk, L., Higher generation subgroup sets and the Σ-invariants of graph groups, Comment. Math. Helvet. 73 (1998), 2244.CrossRefGoogle Scholar
Meinert, H., The geometric invariants of direct products of virtually free groups, Comment. Math. Helvet. 69(1) (1994), 3948.CrossRefGoogle Scholar
Meinert, H., Actions on 2-complexes and the homotopical invariant Σ2 of a group, J. Pure Appl. Algebra 119 (1997), 297317.CrossRefGoogle Scholar
Passman, D. S., The algebraic structure of group rings (Robert E. Krieger Publishing Company, 1985).Google Scholar
Renz, B., Geometrische Invarianten und Endlichkeitseigenschaften von Gruppen, PhD thesis (Johann Wolfgang Goethe-Universität Frankfurt am Main, 1988).Google Scholar
Renz, B., Geometric invariants and HNN-extensions, in Group theory, pp. 465–484 (de Gruyter, Berlin, 1989).CrossRefGoogle Scholar
Schmitt, S., Über den Zusammenhang der geometrischen Invarianten von Gruppe und Untergruppe mit Hilfe von variablen Modulkoeffzienten, Diplomarbeit (Frankfurt a.M., 1991).Google Scholar
Schütz, D., On the direct product conjecture for sigma invariants, Bull. Lond. Math. Soc. 40(4) (2008), 675684.CrossRefGoogle Scholar
Sela, Z., Diophantine geometry over groups I. Makanin–Razborov diagrams, Publ. Math. Inst. Hautes Études Sci. 93 (2001), 31105.CrossRefGoogle Scholar
Stallings, J. R., A finitely presented group whose 3-dimensional homology group is not finitely generated, Amer. J. Math. 85 (1963), 541543.CrossRefGoogle Scholar
Wall, C. T. C., Finiteness conditions for CW-complexes, Ann. of Math. 81(1) (1965), 5669.CrossRefGoogle Scholar
Wilton, H., Hall's theorem for limit groups, Geom. Funct. Anal. 18 (2008), 271303.CrossRefGoogle Scholar
Zaremsky, M. C. B., On the Σ-invariants of generalized Thompson groups and Houghton groups, Int. Math. Res. Not. IMRN 19 (2017), 58615896.Google Scholar