Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T17:15:46.806Z Has data issue: false hasContentIssue false

A Modular André–Oort Statement with Derivatives

Published online by Cambridge University Press:  16 November 2018

Haden Spence*
Affiliation:
Mathematical Institute, Andrew Wiles Building, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK ([email protected])

Abstract

In unpublished notes, Pila discussed some theory surrounding the modular function j and its derivatives. A focal point of these notes was the statement of two conjectures regarding j, j′ and j″: a Zilber–Pink-type statement incorporating j, j′ and j″, which was an extension of an apparently weaker conjecture of André–Oort type. In this paper, I first cover some background regarding j, j′ and j″, mostly covering the work already done by Pila. Then I use a seemingly novel adaptation of the o-minimal Pila–Zannier strategy to prove a weakened version of Pila's ‘Modular André–Oort with Derivatives’ conjecture. Under the assumption of a certain number-theoretic conjecture, the central theorem of the paper implies Pila's conjecture in full generality, as well as a more precise statement along the same lines.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.André, Y., Finitude des couples d'invariants modulaires singuliers sur une courbe algébrique plane non modulaire, J. Reine Angew. Math. 505 (1998), 203208.Google Scholar
2.Bertolin, C., Priodes de 1-motifs et transcendance, J. Number Theory 97(2) (2002), 204221.Google Scholar
3.Bombieri, E. and Gubler, W., Heights in diophantine geometry, New Mathematical Monographs, Volume 4 ( Cambridge University Press, Cambridge, 2006).Google Scholar
4.Diaz, G., Transcendance et indépendance algébrique: liens entre les points de vue elliptique et modulaire, Ramanujan J. 4(2) (2000), 157199.Google Scholar
5.Habegger, P., Weakly bounded height on modular curves, Acta Math. Vietnam 35(1) (2010), 4369.Google Scholar
6.Habegger, P. and Pila, J., Some unlikely intersections beyond André–Oort, Compos. Math. 148(1) (2012), 127.Google Scholar
7.Klingler, B. and Yafaev, A., The André–Oort conjecture, Ann. Math. (2) 180(3) (2014), 867925.Google Scholar
8.Masser, D., Elliptic functions and transcendence, Lecture Notes in Mathematics, Volume 437 (Springer-Verlag, Berlin–New York, 1975).Google Scholar
9.Mertens, M. H. and Rolen, L., On class invariants for non-holomorphic modular functions and a question of Bruinier and Ono, Res. Number Theory 1 (2015), Art. 4, 13.Google Scholar
10.Orr, M., Height bounds and the Siegel property, arXiv:1609.01315 (2016).Google Scholar
11.Pellarin, F., Sur une majoration explicite pour un degré d'isogénie liant deux courbes elliptiques, Acta Arith. 100(3) (2001), 203243.Google Scholar
12.Peterzil, Y. and Starchenko, S., Uniform definability of the Weierstrass ℘ functions and generalized tori of dimension one, Sel. Math. (N.S.) 10(4) (2004), 525550.Google Scholar
13.Pila, J., Rational points of definable sets and results of André–Oort–Manin–Mumford type, Int. Math. Res. Not. IMRN 13 (2009), 24762507.Google Scholar
14.Pila, J., O-minimality and the André–Oort conjecture for ℂn, Ann. Math. (2) 173(3) (2011), 17791840.Google Scholar
15.Pila, J., Modular Ax–Lindemann–Weierstrass with derivatives, Notre Dame J. Form. Log. 54(3–4) (2013), 553565.Google Scholar
16.Pila, J. and Wilkie, A. J., The rational points of a definable set, Duke Math. J. 133(3) (2006), 591616.Google Scholar
17.Scanlon, T., Automatic uniformity, Int. Math. Res. Not. 62 (2004), 33173326.Google Scholar
18.Siegel, C., Über die Klassenzahl quadratischer Zahlkörper, Acta Arith. 1(1) (1935), 8386.Google Scholar
19.Silverman, J. H., Heights and elliptic curves, pp. 253265 ( Springer, New York, 1986).Google Scholar
20Spence, H., André–Oort for a nonholomorphic modular function, Journal de Théorie des Nombres de Bordeaux (to appear), Preprint available at arXiv:1607.03769.Google Scholar
21.van den Dries, L., Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series, Volume 248 ( Cambridge University Press, Cambridge, 1998).Google Scholar
22.van den Dries, L. and Miller, C., On the real exponential field with restricted analytic functions, Israel J. Math. 85(1–3) (1994), 1956.Google Scholar
23.Zagier, D., Elliptic modular forms and their applications, in The 1-2-3 of modular forms, pp. 1103 ( Universitext, Springer, Berlin, 2008).Google Scholar