No CrossRef data available.
Article contents
A generalized Davenport expansion
Part of:
Zeta and $L$-functions: analytic theory
Exponential sums and character sums
Harmonic analysis in one variable
Published online by Cambridge University Press: 26 August 2021
Abstract
We prove a new generalization of Davenport's Fourier expansion of the infinite series involving the fractional part function over arithmetic functions. A new Mellin transform related to the Riemann zeta function is also established.
MSC classification
- Type
- Research Article
- Information
- Proceedings of the Edinburgh Mathematical Society , Volume 64 , Issue 3 , August 2021 , pp. 711 - 715
- Copyright
- Copyright © The Author(s), 2021. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society
References
Bateman, P. T. and Chowla, S., Some special trigonometric series related to the distribution of prime numbers, J. London Math. Soc. 38 (1963), 372–374.CrossRefGoogle Scholar
Chakraborty, K., Kanemitsu, S. and Tsukada, H., Arithmetical Fourier series and the modular relation, Kyushu J. Math. 66(2) (2012), 411–427.CrossRefGoogle Scholar
Coffey, M. W. and Lettington, M. C., Mellin transforms with only critical zeros: Legendre functions, J. Number Theory 148 (2015), 507–536.10.1016/j.jnt.2014.07.021CrossRefGoogle Scholar
Davenport, H., On some infinite series involving arithmetic function, Q. J. Math. 8 (1937), 8–13.10.1093/qmath/os-8.1.8CrossRefGoogle Scholar
Jaffard, S., On Davenport expansions, in Fractal geometry and applications: A jubilee of Benoit Mandelbrot, Part 1, Proc. Sympos. Pure Math., Volume 72, pp. 273–303 (American Mathematical Society, Providence, RI, 2004).CrossRefGoogle Scholar
Li, H. L., Ma, J. and Zhang, W. P., On some Diophantine Fourier series, Acta Math. Sinica (Engl. Ser.) 26 (2010), 1125–1132.CrossRefGoogle Scholar
Moll, V. and Espinosa, O., On some definite integrals involving the Hurwitz zeta function. Part 1, Ramanujan J. 6 (2002), 159–188.Google Scholar
Paris, R. B. and Kaminski, D., Asymptotics and Mellin–Barnes Integrals (Cambridge University Press, 2001), https://doi.org/10.1017/CBO9780511546662.CrossRefGoogle Scholar
Patkowski, A., On Popov's formula involving the von Mangoldt function, Pi Mu Epsilon J. 15(1) (Fall 2019), 45–47.Google Scholar
Segal, S., On an identity between infinite series of arithmetic functions, Acta Arithmetica 28(4) (1976), 345–348.CrossRefGoogle Scholar
Titchmarsh, E. C., The theory of the Riemann zeta function, 2nd edn. (Oxford University Press, 1986).Google Scholar