No CrossRef data available.
Published online by Cambridge University Press: 08 February 2018
Let G be a group acting freely, properly discontinuously and cellularly on some finite dimensional CW-complex Σ(2n) which has the homotopy type of the 2n-sphere 𝕊2n. Then, that action induces a homomorphism G → Aut(H2n(Σ(2n))). We classify all pairs (G, φ), where G is a virtually cyclic group and φ: G → Aut(ℤ) is a homomorphism, which are realizable in the way above and the homotopy types of all possible orbit spaces as well. Next, we consider the family of all groups which have virtual cohomological dimension one and which act on some Σ(2n). Those groups consist of free groups and semi-direct products F ⋊ ℤ2 with F a free group. For a group G from the family above and a homomorphism φ: G → Aut(ℤ), we present an algebraic criterion equivalent to the realizability of the pair (G, φ). It turns out that any realizable pair can be realized on some Σ(2n) with dim Σ(2n) ≤ 2n + 1.