Hostname: page-component-669899f699-swprf Total loading time: 0 Render date: 2025-04-25T12:38:51.211Z Has data issue: false hasContentIssue false

Fractal interpolant curve fitting and reproducing kernel Hilbert spaces

Published online by Cambridge University Press:  26 November 2024

Dah-Chin Luor*
Affiliation:
Department of Data Science and Analytics, I-Shou University, Kaohsiung City, Taiwan R.O.C.
Chiao-Wen Liu
Affiliation:
Department of Applied Science, School of Academic Studies, R.O.C. Naval Academy, Kaohsiung City, Taiwan R.O.C.
*
Corresponding author: Dah-Chin Luor, email [email protected]

Abstract

In this paper,the linear space $\mathcal F$ of a special type of fractal interpolation functions (FIFs) on an interval I is considered. Each FIF in $\mathcal F$ is established from a continuous function on I. We show that, for a finite set of linearly independent continuous functions on I, we get linearly independent FIFs. Then we study a finite-dimensional reproducing kernel Hilbert space (RKHS) $\mathcal F_{\mathcal B}\subset\mathcal F$, and the reproducing kernel $\mathbf k$ for $\mathcal F_{\mathcal B}$ is defined by a basis of $\mathcal F_{\mathcal B}$. For a given data set $\mathcal D=\{(t_k, y_k) : k=0,1,\ldots,N\}$, we apply our results to curve fitting problems of minimizing the regularized empirical error based on functions of the form $f_{\mathcal V}+f_{\mathcal B}$, where $f_{\mathcal V}\in C_{\mathcal V}$ and $f_{\mathcal B}\in \mathcal F_{\mathcal B}$. Here $C_{\mathcal V}$ is another finite-dimensional RKHS of some classes of regular continuous functions with the reproducing kernel $\mathbf k^*$. We show that the solution function can be written in the form $f_{\mathcal V}+f_{\mathcal B}=\sum_{m=0}^N\gamma_m\mathbf k^*_{t_m} +\sum_{j=0}^N \alpha_j\mathbf k_{t_j}$, where ${\mathbf k}_{t_m}^\ast(\cdot)={\mathbf k}^\ast(\cdot,t_m)$ and $\mathbf k_{t_j}(\cdot)=\mathbf k(\cdot,t_j)$, and the coefficients γm and αj can be solved by a system of linear equations.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aronszajn, N., Theory of reproducing kernels, Trans. Amer. Math. Soc. 68(3) (1950), 337404.CrossRefGoogle Scholar
Barnsley, M. F., Fractal functions and interpolation, Constr. Approx. 2 (1986), 303329.CrossRefGoogle Scholar
Barnsley, M. F., Fractals everywhere (Academic Press, Orlando, FL, 1988).Google Scholar
Barnsley, M. F., Elton, J., Hardin, D. and Massopust, P., Hidden variable fractal interpolation functions, SIAM J. Math. Anal. 20(5) (1989), 12181242.CrossRefGoogle Scholar
Barnsley, M. F. and Massopust, P. R., Bilinear fractal interpolation and box dimension, J. Approx. Theory 192(C) (2015), 362378.CrossRefGoogle Scholar
Berlinet, A. and Thomas-Agnan, C., Reproducing kernel Hilbert spaces in probability and statistics (Springer, New York, 2004).CrossRefGoogle Scholar
Bouboulis, P. and Mavroforakis, M., Reproducing kernel Hilbert spaces and fractal interpolation, J. Comput. Appl. Math. 235(12) (2011), 34253434.CrossRefGoogle Scholar
Chand, A. K. B. and Kapoor, G. P., Generalized cubic spline fractal interpolation functions, SIAM J. Numer. Anal. 44(2) (2006), 655676.CrossRefGoogle Scholar
Chand, A. K. B. and Navascués, M. A., Generalized Hermite fractal interpolation, Rev. R. Acad. Cienc. Zaragoza 64(2) (2009), 107120.Google Scholar
Chand, A. K. B. and Viswanathan, P., A constructive approach to cubic Hermite fractal interpolation function and its constrained aspects, BIT 53(4) (2013), 841865.CrossRefGoogle Scholar
Cucker, F. and Zhou, D. X., Learning theory: an approximation theory viewpoint (Cambridge University Press, New York, NY, 2007).CrossRefGoogle Scholar
Györfi, L., Kohler, M., Krzyzak, A. and Walk, H., A distribution-free theory of nonparametric regression (Springer, New York, 2002).CrossRefGoogle Scholar
Härdle, W., Müller, M., Sperlich, S. and Werwatz, A., Nonparametric and semiparametric models (Springer, New York, 2004).CrossRefGoogle Scholar
Hart, J. D., Nonparametric smoothing and lack-of-fit tests (Springer-Verlag, New York, 1997).CrossRefGoogle Scholar
Katiyar, S. K., Chand, A. K. B. and Kumar, G. S., A new class of rational cubic spline fractal interpolation function and its constrained aspects, Appl. Math. Comput. 346 (2019), 319335.Google Scholar
Li, Q. and Racine, J. S., Nonparametric econometrics (Princeton University Press, Princeton, NJ, 2007).Google Scholar
Luor, D.-C., Fractal interpolation functions with partial self similarity, J. Math. Anal. Appl. 464(1) (2018), 911923.CrossRefGoogle Scholar
Luor, D.-C., Fractal interpolation functions for random data sets, Chaos Solitons Fractals 114 (2018), 256263.CrossRefGoogle Scholar
Marvasti, M. A. and Strahle, W. C., Fractal geometry analysis of turbulent data, Signal Process. 41(2) (1995), 191201.CrossRefGoogle Scholar
Massopust, P. R., Fractal functions, fractal surfaces, and wavelets (Academic Press, San Diego, 1994).Google Scholar
Massopust, P. R., Interpolation and approximation with splines and fractals (Oxford University Press, New York, 2010).Google Scholar
Mazel, D. S. and Hayes, M. H., Using iterated function systems to model discrete sequences, IEEE Trans. Signal Process. 40(7) (1992), 17241734.CrossRefGoogle Scholar
Mazel, D. S., Representation of discrete sequences with three-dimensional iterated function systems, IEEE Trans. Signal Process. 42(11) (1994), 32693271.CrossRefGoogle Scholar
Navascués, M. A., A fractal approximation to periodicity, Fractals 14(4) (2006), 315325.CrossRefGoogle Scholar
Navascués, M. A., Fractal approximation, Complex Anal. Oper. Theory 4 (2010), 953974.CrossRefGoogle Scholar
Navascués, M. A., Fractal bases of Lp spaces, Fractals 20(2) (2012), 141148.CrossRefGoogle Scholar
Navascués, M. A. and Sebastián, M. V., Generalization of Hermite functions by fractal interpolation, J. Approx. Theory 131(1) (2004), 1929.CrossRefGoogle Scholar
Paulsen, V.I. and Raghupathi, M., An introduction to the theory of reproducing kernel Hilbert spaces (Cambridge University Press, Cambridge, UK, 2016).CrossRefGoogle Scholar
Rasmussen, C. E. and Williams, C. K. I., Gaussian processes for machine learning (The MIT Press, Cambridge, MA, 2006).Google Scholar
Tsybakov, A. B., Introduction to nonparametric estimation (Springer, New York, 2009).CrossRefGoogle Scholar
Vapnik, V. N., Statistical learning theory (Wileys, New York, 1998).Google Scholar
Viswanathan, P. and Chand, A. K. B., Fractal rational functions and their approximation properties, J. Approx. Theory 185 (2014), 3150.CrossRefGoogle Scholar
Viswanathan, P. and Chand, A. K. B., α-fractal rational splines for constrained interpolation, Electron. Trans. Numer. Anal. 41 (2014), 420442.Google Scholar
Viswanathan, P., Navascués, M. A. and Chand, A. K. B., Associate fractal functions in ${\mathcal L}^p$-spaces and in one-sided uniform approximation, J. Math. Anal. Appl. 433(2) (2016), 862876.CrossRefGoogle Scholar
Wang, H.-Y. and Yu, J.-S., Fractal interpolation functions with variable parameters and their analytical properties, J. Approx. Theory 175 (2013), 118.CrossRefGoogle Scholar