Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-03T16:11:30.088Z Has data issue: false hasContentIssue false

Asymptotic normality in t-stack sortable permutations

Published online by Cambridge University Press:  04 November 2020

Xi Chen
Affiliation:
School of Mathematical Sciences, Dalian University of Technology, Dalian116024, PR China ([email protected])
Jianxi Mao
Affiliation:
School of Mathematical Sciences, Dalian University of Technology, Dalian116024, PR China ([email protected])
Yi Wang
Affiliation:
School of Mathematical Sciences, Dalian University of Technology, Dalian116024, PR China ([email protected])

Abstract

In this paper, we show that the numbers of t-stack sortable n-permutations with k − 1 descents satisfy central and local limit theorems for t = 1, 2, n − 1 and n − 2. This result, in particular, gives an affirmative answer to Shapiro's question about the asymptotic normality of the Narayana numbers.

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bender, E. A., Central and local limit theorems applied to asymptotic enumeration, J. Combin. Theory Ser. A 15 (1973), 91111.CrossRefGoogle Scholar
Bóna, M., Symmetry and unimodality in t-stack sortable permutations, J. Combin. Theory Ser. A 98 (2002), 201209; Corrigendum: J. Combin. Theory Ser. A 99 (2002), 191–194.CrossRefGoogle Scholar
Bóna, M., A survey of stack-sorting disciplines, Electron. J. Combin. 9 (2003), #A1.CrossRefGoogle Scholar
Bousquet-Mélou, M., Multi-statistic enumeration of two-stack sortable permutations, Electron. J. Combin. 5 (1998), #R21.CrossRefGoogle Scholar
Brändén, P., On linear transformations preserving the Pólya frequency property, Trans. Am. Math. Soc. 358 (2006), 36973716.CrossRefGoogle Scholar
Canfield, E. R., Asymptotic normality in enumeration, in Handbook of enumerative combinatorics, Discrete Math. Appl., pp. 255–280 (Boca Raton, FL, CRC Press, 2015)Google Scholar
Carlitz, L., Kurtz, D. C., Scoville, R. and Stackelberg, O. P., Asymptotic properties of Eulerian numbers, Z. Wahrscheinlichkeitstheorie Verwandte Geb. 23 (1972), 4754.CrossRefGoogle Scholar
Chen, W. Y. C. and Wang, D. G. L., The limiting distribution of the q-derangement numbers, European J. Combin. 31 (2010), 20062013.CrossRefGoogle Scholar
Chen, W. Y. C., Wang, C. J. and Wang, L. X. W., The limiting distribution of the coefficients of the q-Catalan numbers, Proc. Am. Math. Soc. 136 (2008), 37593767.CrossRefGoogle Scholar
Chen, W. Y. C., Wang, L. X. W. and Yang, A. L. B., Schur positivity and the q-log-convexity of the Narayana polynomials, J. Algebraic Combin. 32 (2010), 303338.CrossRefGoogle Scholar
Claesson, A., Dukes, M. and Steingrímsson, E., Permutations sortable by n − 4 passes through a stack, Ann. Comb. 14 (2010), 4551.CrossRefGoogle Scholar
Comtet, L., Advanced combinatorics (Reidel, Dordrecht, 1974).CrossRefGoogle Scholar
Defant, C., Preimages under the stack-sorting algorithm, Graphs Combin. 33 (2017), 103122.CrossRefGoogle Scholar
Defant, C., Counting 3-stack-sortable permutations, J. Combin. Theory Ser. A 172 (2020), 105209, 26 p.CrossRefGoogle Scholar
Feller, W., The fundamental limit theorems in probability, Bull. Am. Math. Soc. 51 (1945), 800832.CrossRefGoogle Scholar
Gould, H. W., Combinatorial identities (Morgantown Printing and Binding Co., 1972).Google Scholar
Goulden, I. P. and West, J., Raney paths and a combinatorial relationship between rooted nonseparable planar maps and tow-stack-sortable permutations, J. Combin. Theory Ser. A 75 (1996), 220242.CrossRefGoogle Scholar
Harper, L. H., Stirling behavior is asymptotically normal, Ann. Math. Statist. 38 (1967), 410414.CrossRefGoogle Scholar
Hwang, H.-K., Chern, H.-H. and Duh, G.-H., An asymptotic distribution theory for Eulerian recurrences with applications, Adv. Appl. Math. 112 (2020), 101960.CrossRefGoogle Scholar
Jacquard, B. and Schaeffer, G., A bijective census of nonseparable planar maps, J. Combin. Theory Ser. A 83 (1998), 120.CrossRefGoogle Scholar
Knuth, D. E., The art of computer programming, Vol. 1: Fundamental algorithms, Ser. Comput. Sci. Inf. Proc. (Addison-Wesley, London, 1968).Google Scholar
Liu, L. L. and Wang, Y., A unified approach to polynomial sequences with only real zeros, Adv. Appl. Math. 38 (2007), 542560.CrossRefGoogle Scholar
Shapiro, L., Some open questions about random walks, involutions, limiting distributions, and generating functions, Adv. Appl. Math. 27 (2001), 585596.CrossRefGoogle Scholar
Sulanke, R. A., The Narayana distribution, J. Statist. Plann. Inference 101 (2002), 311326.CrossRefGoogle Scholar
Wang, Y., Zhang, H.-X. and Zhu, B.-X., Asymptotic normality of Laplacian coefficients of graphs, J. Math. Anal. Appl. 455 (2017), 20302037.CrossRefGoogle Scholar
West, J., Permutations with forbidden subsequences and stack-sortable permutations, PhD thesis (Massachusetts Institute of Technology, 1990)Google Scholar
Yang, A. L. B. and Zhang, P. B., The real-rootedness of Eulerian polynomials via the Hermite-Biehler theorem, Discrete Math. Theor. Comput. Sci. Proc. FPSAC 2015 (2015), 465473.Google Scholar
Zeilberger, D., A proof of Julian West's conjecture that the number of two-stack-sortable permutations of length n is 2(3n)!/((n + 1)!(2n + 1)!), Discrete Math. 102 (1992), 8593.CrossRefGoogle Scholar
Zhang, P. B., On the real-rootedness of the descent polynomials of (n − 2)-stack sortable permutations, Electron. J. Combin. 22 (2015). Paper 4.12, 9 pp.CrossRefGoogle Scholar
Zhu, B.-X., Log-concavity and strong q-log-convexity for Riordan arrays and recursive matrices, Proc. Roy. Soc. Edinburgh Sect. A 147 (2017), 12971310.CrossRefGoogle Scholar