We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
References
1
1.Arnold, V. I., Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian, Usp. Mat. Nauk18(5) (1963), 13–40.Google Scholar
2
2.Bruno, A. D., Analytic form of differential equations, I, Trans. Mosc. Math. Soc.25 (1971), 131–288.Google Scholar
3
3.Garay, M. D., The Herman conjecture, Preprint (arxiv.org/abs/1206.1245; 2012).Google Scholar
4
4.Garay, M. D., The Herman conjecture, in Singularities, Oberwolfach Reports, Report 46, pp. 43–45 (European Mathematical Society, 2012).Google Scholar
5
5.Garay, M. D., An abstract KAM theorem, Mosc. Math. J.14(4) (2013), 745–772.Google Scholar
6
6.Garay, M. D., Degenerations of invariant Lagrangian manifolds, J. Singularities8 (2014), 50–67.Google Scholar
7
7.Herman, M. R., Some open problems in dynamical systems, in Proc. International Congress of Mathematicians, Berlin, Germany, 18–27 August 1998, Volume II, pp. 797–808 (Universität Bielefeld, Fakultät für Mathematick, 1998).Google Scholar
8
8.Kleinbock, D., Extremal subspaces and their submanifolds, Geom. Funct. Analysis13(2) (2003), 437–466.CrossRefGoogle Scholar
9
9.Kleinbock, D. Y. and Margulis, G. A., Flows on homogeneous spaces and Diophantine approximation on manifolds, Annals Math.148 (1998), 339–360.Google Scholar
10
10.Kolmogorov, A. N., On the conservation of quasi-periodic motions for a small perturbation of the Hamiltonian function, Dokl. Akad. Nauk SSSR98 (1954), 527–530 (in Russian).Google Scholar
11
11.Mahler, K., Über das Maß der Menge aller S-Zahlen, Math. Annalen106(1) (1932), 131–139.CrossRefGoogle Scholar
12
12.Pyartli, A. S., Diophantine approximations on submanifolds of Euclidean space, Funct. Analysis Applic.3(4) (1969), 303–306.CrossRefGoogle Scholar
13
13.Rüssmann, H., Invariant tori in non-degenerate nearly integrable Hamiltonian systems, Reg. Chaot. Dyn.6(2) (2001), 119–204.Google Scholar
14
14.Sprindzhuk, V. G., A proof of Mahler's conjecture on the measure of the set of S-numbers, Izv. RAN Ser. Mat.29(2) (1965), 379–436.Google Scholar