Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T19:57:08.096Z Has data issue: false hasContentIssue false

Utilization of the system architecture in the context of validation in the business-to-business (B2B) sector

Published online by Cambridge University Press:  16 May 2024

Lynn Humpert*
Affiliation:
Fraunhofer IEM, Germany
Daria Wilke
Affiliation:
Fraunhofer IEM, Germany
Sarah Brueggemann
Affiliation:
HARTING Applied Technologies, Germany
Harald Anacker
Affiliation:
Fraunhofer IEM, Germany
Roman Dumitrescu
Affiliation:
Fraunhofer IEM, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The European Green Deal aims to reduce global emissions by minimizing the use of resources. Early validation of products helps to reduce rework, costs and therefore resources. However, validation of complex mechatronic products is challenging due to interdependencies. Companies are applying systems engineering to meet this challenge. Current validation approaches are insufficient in the early design phases. This paper presents an approach to validation using the system architecture in the B2B sector. A machine tool and a custom built machine are presented as evaluation examples.

Type
Systems Engineering and Design
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2024.

References

Albers, A., Behrendt, M., Klingler, S. and Matros, K. (2016), “Verifikation und Validierung im Produktentstehungsprozess”, in Lindemann, U. (Ed.), Handbuch Produktentwicklung, Carl Hanser Verlag GmbH & Co. KG, München, pp. 541569. https://doi.org/10.3139/9783446445819.019.CrossRefGoogle Scholar
Albers, A., Behrendt, M., Schroeter, J., Ott, S. and Klingler, S. (2013), “X-in-the-loop: A framework for supporting central engineering activities and contracting complexity in product engineering processes”: ICED 13, the 19th International Conference on Engineering Design, Sungkyunkwan University (SKKU), Seoul, Korea, August 19-22, 2013, Design Society, Castle Cary, Somerset.Google Scholar
Alt, O. (2012), Modellbasierte Systementwicklung mit SysML, Carl Hanser Fachbuchverlag, München. https://doi.org/10.3139/9783446431270.CrossRefGoogle Scholar
Barosan, I. and van der Heijden, J. (2022), “Integration of SysML models in a 3D environment for Virtual Testing and Validation”, Proceedings of the Federal Africa and Middle East Conference on Software Engineering, Cairo-Kampala, Egypt, June 7-8, 2022, Association for Computing Machinery, New York, pp. 3945. https://doi.org/10.1145/3531056.3542784.CrossRefGoogle Scholar
Blessing, L.T. and Chakrabarti, A. (Eds.) (2009), "DRM, a Design Research Methodology", Springer London. https://doi.org/10.1007/978-1-84882-587-1.CrossRefGoogle Scholar
Bremer, C. (2020), Systematik zur Modellierung flexibler Produktionsanlagen im Model-Based Systems Engineering, [PhD Thesis], Paderborn University.Google Scholar
Daigl, M. and Glunz, R. (2016), ISO 29119 - Die Softwaretest-Normen verstehen und anwenden, dpunkt.verlag, Heidelberg.Google Scholar
Douglass, B.P. (2021), Agile model-based systems engineering cookbook: Improve system development by applying proven recipes for effective agile systems engineering, Packt Publishing, Birmingham, Mumbai.Google Scholar
Europäische Kommission (2023), Der grüne Industrieplan. [online] Europäische Kommission. available at: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal/green-deal-industrial-plan_de (accessed 28 September 2023).Google Scholar
European Commission (2023), A Green Deal Industrial Plan for the Net-Zero Age, European Commission, Brussels, Belgium.Google Scholar
Fischer, N. and Salzwedel, H. (2012), “Validating Avionics Conceptual Architectures with Executable Specifications”, Systemics, Cybernetics and informatics, Vol. 10 No. 4, pp. 46-55.Google Scholar
Gausemeier, J., Dumitrescu, R., Echterfeld, J., Pfänder, T., Steffen, D. and Thielemann, F. (Eds.) (2019), Innovationen für die Märkte von morgen: Strategische Planung von Produkten, Dienstleistungen und Geschäftsmodellen, Hanser, München.Google Scholar
Glaser, C. (2019), “Millersche Zahl”, In: Glaser, C. (Ed.), Risiko im Management, Springer Fachmedien Wiesbaden, Wiesbaden, pp. 5356. https://doi.org/10.1007/978-3-658-25835-1CrossRefGoogle Scholar
Gräßler, I. and Oleff, C. (2022), Systems engineering: Verstehen und industriell umsetzen, Springer Vieweg, Berlin. https://doi.org/10.1007/978-3-662-64517-8_1CrossRefGoogle Scholar
Henning, F. and Moeller, E. (Eds.) (2011), Der Prozess der Produktentstehung, Carl Hanser Verlag GmbH & Co. KG, München. https://doi.org/10.3139/9783446428911.001CrossRefGoogle Scholar
Humpert, L., Röhm, B., Anacker, H., Dumitrescu, R. and Anderl, R. (2022), “Method for direct end customer integration into the agile product development”, Procedia CIRP, ELSEVIER, Vol. 109, pp. 215220.Google Scholar
Humpert, L., Wäschle Moritz, Horstmeyer Sarah, Anacker, H., Dumitrescu, R. and, A. Albers, (2023a), “Stakeholder-oriented Elaboration of Artificial Intelligence use cases using the example of Special-Purpose engineering”, 33rd CIRP Design Conference, ELSEVIER, Vol. 119, pp. 693-698.CrossRefGoogle Scholar
Humpert, L., Wilke, D., Anacker, H., Dumitrescu, R. and Tissen, D. (2023b), „Investigation of validation methods for system design in the B2B sector“, Accepted, SysCon, Montreal, 2024Google Scholar
Humpert, L., Zagatta, K., Anacker, H. and Dumitrescu, R. (2023c), “Identification of fields of action for validation in Systems Engineering”, IEEE International Conference on Technology Management, Operations and Decisions (IEEE ICTMOD), Rabat, Morocco, November 22-24, 2023, IEEE.CrossRefGoogle Scholar
IEEE (2011), ISO/IEC/IEEE 42010 Systems and software engineering — Architecture description.Google Scholar
INCOSE (2015), Systems engineering handbook: A guide for system life cycle processes and activities, Fourth Edition, Wiley, Hoboken, N.J.Google Scholar
INCOSE (2022), “Guide to Verification and Validation. May 2022”.Google Scholar
INCOSE (2023), INCOSE Systems Engineering Handbook, 5th ed., John Wiley & Sons Incorporated, Newark.Google Scholar
Kaiser, L. (2014), Rahmenwerk zur Modellierung einer plausiblen Systemstruktur mechatronischer Systeme, [PhD Thesis], Paderborn University.Google Scholar
Kelley, T. and Kelley, D. (2013), Creative confidence: Unleashing the creative potential within us all, William Collins, London.Google Scholar
Knöchel, M. (2017), Kundeneinbindung Im Innovationsprozess - Methoden, Essentials, Springer Gabler, Wiesbaden. https://doi.org/10.1007/978-3-658-20427-3_6.CrossRefGoogle Scholar
Könemann, U., Wilke, D., Anacker, H. and Dumitrescu, R. (2022), “Identification of stakeholder-specific Systems Engineering competencies for industry”, 2022 IEEE International Systems Conference (SysCon), Montreal, Canada, April 25-28, 2022, IEEE, pp. 17. 10.1109/SysCon53536.2022.9773861Google Scholar
Mandel, C., Boning, J., Behrendt, M. and Albers, A. (2021), “A Model-Based Systems Engineering Approach to Support Continuous Validation in PGE - Product Generation Engineering”, 2021 IEEE International Symposium on Systems Engineering (ISSE), Vienna, Austria, September 13- October 13, IEEE, pp. 18.CrossRefGoogle Scholar
Menold, J., Simpson, T.W. and Jablokow, K. (2019), “The prototype for X framework: exploring the effects of a structured prototyping framework on functional prototypes”, Research in Engineering Design, Vol. 30 No. 2, pp. 187201. https://doi.org/10.1007/s00163-018-0289-4.CrossRefGoogle Scholar
Ramos, A.L., Ferreira, J.V. and Barcelo, J. (2013), “LITHE: An Agile Methodology for Human-Centric Model-Based Systems Engineering”, IEEE Transactions on Systems, Man, and Cybernetics: Systems, Vol. 43 No. 3, pp. 504521. https://doi.org/10.1109/TSMCA.2012.2207888.Google Scholar
Schierbaum, A.M. (2019), Systematik zur Ableitung bedarfsgerechter Systems Engineering Leitfäden im Maschinenbau, [PhD Thesis], Paderborn University.Google Scholar
Speck, A., Witt, S., Feja, S. and Pulvermüller, E. (2015), “Tool-based checking of business process models”, in Ehlers, J. and Thalheim, B. (Eds.), Proceedings of the 7th International Conference on Subject-Oriented Business Process Management, Kiel, Germany, April 23-24, ACM, New York, NY, USA, pp. 18. https://doi.org/10.1145/2723839.2723848.Google Scholar
Dani, Stein, Freitas, V., and Thom, C.M.D.S., L.H. (2022), “Recommendations for visual feedback about problems within BPMN process models”, Software and Systems Modeling, Vol. 21 No. 5, pp. 20392065.Google Scholar
Ingenieure, Verein Deutscher (2004), VDI-Richtlinie VDI 2206: Entwicklungsmethodik für mechatronische Systeme.Google Scholar
Ingenieure, Verein Deutscher (2021), VDI-Richtlinie VDI 2206: Entwicklungsmethodik für mechatronische Systeme.Google Scholar
Verein Deutscher Ingenieure (VDI) (2018), Ressourceneffizienz in kleinen und mittleren Unternehmen (KMU): Strategien und Vorgehensweisen zum effizienten Einsatz natürlicher Ressourcen.Google Scholar
Verein Deutscher Ingenieure (VDI) (2023), Ressourceneffizienz und Ressourcenschonung: Methodische Grundlagen, Prinzipien und Strategien.Google Scholar
Wilke, D., Humpert, L., Mansheim, J., Anacker, H. and Dumitrescu, R. (2023), “Systems Engineering Potentials and Use Cases for the Offer Phase in Special Purpose Machinery”, Proceedings of the 34th Symposium Design for X (DFX2023), Radebeul, Germany, September 14-15, 2023, The Design Society, pp. 225234. https://doi.org/10.35199/dfx2023.23.CrossRefGoogle Scholar
Wilke, D., Humpert, L., Seidenberg, T., Menne, L., Grewe, C., Dumitrescu, R. (2024a), "MBSE as an enabler for collaborative offer management for individual production systems". Accepted, SysCon, Montreal, 2024CrossRefGoogle Scholar
Wilke, D., Humpert, L., Suwal, P., Anacker, H. and Dumitrescu, R. (2024b), “Framework for the selection of Systems Engineering modelling languages and methods in special purpose machinery”. Unpublished, NordDESIGN 2024, Reykjavík, Iceland, August 12-14, 2024, The Design Society.CrossRefGoogle Scholar