Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T10:04:07.324Z Has data issue: false hasContentIssue false

Using cluster analysis to enhance a method for the management of disturbance factors via product structures

Published online by Cambridge University Press:  16 May 2024

Richard Breimann*
Affiliation:
Technische Universität Darmstadt, Germany
Laura Luran Sun
Affiliation:
Technische Universität Darmstadt, Germany
Eckhard Kirchner
Affiliation:
Technische Universität Darmstadt, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

To achieve higher functionality in mechatronic systems, the management of disturbance factors plays a crucial role. For this purpose, a method was developed in prior works to address this management via the optimisation of product structures. However, this method lacks applicability due to the complexity of one step of the method. It is the goal of this paper to present a software tool, utilizing cluster-analysis to sort components into assemblies, with which this step is supported. Additionally, the method is generally adapted to address a wider spectrum of phenomena in mechatronic systems.

Type
Design Methods and Tools
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2024.

References

Bacher, Johann (2010): Clusteranalyse. Anwendungsorientierte Einführung in Klassifikationsverfahren. 3., erg., vollst. überarb. u. neu gestalt. Aufl. München: Oldenbourg.CrossRefGoogle Scholar
Breimann, Richard; Fett, Michel; Küchenhof, Jan; Gomberg, Ilja; Kirchner, Eckhard; Krause, Dieter; Trieu, Hoc Khiem (2023a): A method for optimizing product architectures for the management of disturbance factors. In: Procedia CIRP 119, S. 10411046. https://dx.doi.org/10.1016/j.procir.2023.02.179.Google Scholar
Breimann, Richard; Rennpferdt, Christoph; Wehrend, Sven; Kirchner, Eckhard; Krause, Dieter (2023b): Exploiting the sustainability potential of modular products by integrating R-imperatives into product life phases. In: Proc. Des. Soc. 3, S. 17851794. https://dx.doi.org/10.1017/pds.2023.179.Google Scholar
Dudik, Joshua M.; Kurosu, Atsuko; Coyle, James L.; Sejdić, Ervin (2015): A comparative analysis of DBSCAN, K-means, and quadratic variation algorithms for automatic identification of swallows from swallowing accelerometry signals. In: Computers in biology and medicine 59, S. 1018. https://dx.doi.org/10.1016/j.compbiomed.2015.01.007.Google ScholarPubMed
Erixon, Gunnar; Yxkull, Alex von; Arnström, Anders (1996): Modularity – the Basis for Product and Factory Reengineering. In: CIRP Annals 45 (1), S. 16. https://dx.doi.org/10.1016/S0007-8506(07)63005-4.Google Scholar
Everitt, Brian S.; Landau, Sabine; Leese, Morven; Stah, Daniel (2011): Cluster analysis. 5th ed. Chichester: Wiley (Wiley series in probability and statistics).CrossRefGoogle Scholar
Github (2023a): _agglomerative.py. Online verfügbar unter https://github.com/scikit-learn/scikit-learn/blob/main/ sklearn/cluster/_agglomerative.py, zuletzt aktualisiert am 26.10.2023.Google Scholar
Github (2023b): _dbscan.py. Online verfügbar unter https://github.com/scikit-learn/scikit-learn/blob/main/sklearn /cluster/_dbscan.py, zuletzt aktualisiert am 26.10.2023.Google Scholar
Github (2023c): _kmeans.py. Online verfügbar unter https://github.com/scikit-learn/scikit-learn/blob/main/sklearn/ cluster/_kmeans.py, zuletzt aktualisiert am 26.10.2023.Google Scholar
Github (2023d): hierarchy.py. Online verfügbar unter https://github.com/scipy/scipy/blob/main/scipy/cluster/ hierarchy.py, zuletzt aktualisiert am 26.10.2023.Google Scholar
Kotler, Philip; Keller, Kevin Lane; Bliemel, Friedhelm (2011): Marketing-Management. Strategien für wertschaffendes Handeln. 12., aktualisierte Aufl., [Nachdr.]. München: Pearson Studium (Wi - Wirtschaft).Google Scholar
Krause, Dieter; Gebhardt, Nicolas (2018): Methodische Entwicklung modularer Produktfamilien. Hohe Produktvielfalt beherrschbar entwickeln. 1. Aufl. 2018. Berlin, Heidelberg: Springer Berlin Heidelberg. Online verfügbar unter http://nbn-resolving.org/urn:nbn:de:bsz:31-epflicht-1501590.CrossRefGoogle Scholar
Mathias, J.; Kloberdanz, H.; Engelhardt, R.; Birkhofer, H. (2010): Strategies and principles to design robust products. In: DS 60: Proceedings of DESIGN 2010, the 11th International Design Conference, Dubrovnik, Croatia, S. 341350. Online verfügbar unter https://www.designsociety.org/publication/29379/STRATEGIES+AND+PRINCIPLES+TO+DESIGN+ROBUST+PRODUCTS.Google Scholar
Westerhausen, Meyer zu, Sören; Schneider, Jannik; Lachmayer, Roland (2023): Reliability analysis for sensor networks and their data acquisition: A systematic literature review. In: Proc. Des. Soc. 3, S. 30653074. https://dx.doi.org/10.1017/pds.2023.307.Google Scholar
Müller, W. (2004): Multivariate Statistik im Quantitativen Marketing: Konzeption und Anwendungsbereiche der Clusteranalyse. Online verfügbar unter https://opus.bsz-bw.de/fhdo/files/36/iamm-_clusteranalyse_im_ marketing.pdf.Google Scholar
Runkler, Thomas A. (2015): Data mining. Modelle und Algorithmen intelligenter Datenanalyse. 2., aktualisierte Auflage. Wiesbaden: Springer Fachmedien (Lehrbuch).CrossRefGoogle Scholar
Saraçli, Sinan; Doğan, Nurhan; Doğan, İsmet (2013): Comparison of hierarchical cluster analysis methods by cophenetic correlation. In: J Inequal Appl 2013 (1), S. 18. https://dx.doi.org/10.1186/1029-242X-2013-203.Google Scholar
Steward, Donald V. (1981): The design structure system: A method for managing the design of complex systems. In: IEEE Trans. Eng. Manage. EM-28 (3), S. 7174. https://dx.doi.org/10.1109/TEM.1981.6448589.Google Scholar
Suh, Nam P. (2001): Axiomatic design. Advances and applications. New York, Oxford: Oxford University Press (CIRP design book series). Online verfügbar unter http://www.loc.gov/catdir/enhancements/fy/0610/00040635-d.html.Google Scholar
Taguchi, Genichi; Chowdhury, Subir; Wu, Yuin; Taguchi, Shin; Yano, Hiroshi (Hg.) (2011): Taguchi's quality engineering handbook. Hoboken, N.J, Livonia, Mich: John Wiley & Sons. Online verfügbar unter http://onlinelibrary.wiley.com/book/10.1002/9780470258354.Google Scholar
Ward, Joe H. (1963): Hierarchical Grouping to Optimize an Objective Function. In: Journal of the American Statistical Association 58 (301), S. 236. https://dx.doi.org/10.2307/2282967.CrossRefGoogle Scholar
Welzbacher, P.; Puchtler, S.; Geipl, A.; Kirchner, E. (2022): Uncertainty Analysis of a Calculation Model for Electric Bearing Impedance. In: Proc. Des. Soc. 2, S. 653662. https://dx.doi.org/10.1017/pds.2022.67.Google Scholar
Welzbacher, Peter; Geipl, Anja; Kraus, Benjamin; Puchtler, Steffen; Kirchner, Eckhard (2023): A follow-up on the methodical framework for the identification, analysis and consideration of uncertainty in the context of the integration of sensory functions by means of sensing machine elements. In: Proc. Des. Soc. 3, S. 141150. https://dx.doi.org/10.1017/pds.2023.15.Google Scholar
Welzbacher, Peter; Vorwerk-Handing, Gunnar; Kirchner, Eckhard (2021): A control list for the systematic identification of disturbance factors. In: Proc. Des. Soc. 1, S. 5160. https://dx.doi.org/10.1017/pds.2021.6.Google Scholar