Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-05T14:48:42.083Z Has data issue: false hasContentIssue false

Towards an automatic contradiction detection in requirements engineering

Published online by Cambridge University Press:  16 May 2024

Alexander Elenga Gärtner*
Affiliation:
Technische Universität Berlin, Germany
Dietmar Göhlich
Affiliation:
Technische Universität Berlin, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper presents a novel method for automatic contradiction detection in requirements engineering using a hybrid approach combining formal logic with Large Language Models (LLMs), specifically GPT-3. Our three-phase process detects contradictions by identifying conditionals and pseudo-grammatical elements, and employing LLMs for nuanced contradiction detection. Tested extensively, including on a real-world electric bus project, our method achieved 99% accuracy and 60% recall. This approach significantly reduces manual effort, enhances quality, and is scalable for future advancements.

Type
Artificial Intelligence and Data-Driven Design
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2024.

References

Aristoteles (1986). Metaphysik. Schriften zur Ersten Philosophie. Übertr. u. hrsg. v. Franz F. Schwarz. Reclam.Google Scholar
Babcock, Jonathan (2007). GOOD REQUIREMENTS ARE MORE THAN JUST ACCURATE. Available online at https://practicalanalyst.com/good-requirements-are-more-than-just-accurate/ (accessed 5/20/2022).Google Scholar
Bender, Beate/Gericke, Kilian (2021). Entwickeln der Anforderungsbasis: Requirements Engineering. In: Beate Bender/Kilian Gericke, (Eds.). Pahl/Beitz Konstruktionslehre. Berlin, Heidelberg, Springer Berlin Heidelberg, 169209.Google Scholar
DIN ISO 9000:2015. Qualitätsmanagementsysteme., 2015.Google Scholar
Ehrlenspiel, Klaus/Meerkamm, Harald (2017). Integrierte Produktentwicklung. Denkabläufe, Methodeneinsatz, Zusammenarbeit. 6th ed. München, Carl Hanser Verlag.Google Scholar
Eisenbart, B./Gericke, K./Blessing, L. (2011). A framework for comparing design modelling approaches across disciplines. In: Culley, S. J, Hicks, B. J, et al. (Ed.). Proceedings of the 18th International Conference on Engineering Design (ICED11), pp. 344355.Google Scholar
Fischbach, Jannik/Hauptmann, Benedikt/Konwitschny, Lukas/Spies, Dominik/Vogelsang, Andreas (2020). Towards Causality Extraction from Requirements. https://doi.org/10.48550/arXiv.2006.15871.CrossRefGoogle Scholar
Gärtner, A. E./Göhlich, D./Fay, T.-A. (2023). Automated Condition Detection in Requirements Engineering. In: ICED23 Proceedings, 707716.CrossRefGoogle Scholar
Gärtner, Alexander Elenga/Fay, Tu-Anh/Göhlich, Dietmar (2022). Fundamental Research on Detecting Contradictions in Requirements: Taxonomy and Semi-Automated Approach. Applied Sciences 12 (15), 7628. https://doi.org/10.3390/app12157628.CrossRefGoogle Scholar
Gärtner, Alexander Elenga/Göhlich, Dietmar (2023). Contribution to an Automated Contradiction Detection in Complex Specification Sheets. https://doi.org/10.21203/rs.3.rs-3384770/v1.CrossRefGoogle Scholar
Gericke, Kilian/Blessing, L. (2012). An analysis of design process models across disciplines. In: Marjanovic, D./Storga, M./Pavkovic, N. et al. (Eds.). DESIGN 2012. Proceedings of the 12th International Design Conference, May 21 - 24, 2012, Dubrovnik, Croatia. Zagreb, Fac. of Mechanical Engineering and Naval Architecture, pp. 171-180.Google Scholar
Gericke, Kilian/Qureshi, A. J./Blessing, Lucienne (2013). Analyzing Transdisciplinary Design Processes in Industry: An Overview. In: Volume 5: 25th International Conference on Design Theory and Methodology; ASME 2013 Power Transmission and Gearing Conference, ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Portland, Oregon, USA, 04.08.2013 - 07.08.2013. American Society of Mechanical Engineers.Google Scholar
Gervasi, Vincenzo/Zowghi, Didar (2005). Reasoning about inconsistencies in natural language requirements. ACM Transactions on Software Engineering and Methodology 14 (3), 277330. https://doi.org/10.1145/1072997.1072999.CrossRefGoogle Scholar
Göhlich, Dietmar/Bender, Beate/Fay, Tu-Anh/Gericke, Kilian (2021). Product requirements specification process in product development. Proceedings of the Design Society 1, 24592470. https://doi.org/10.1017/pds.2021.507.CrossRefGoogle Scholar
Göhlich, Dietmar/Fay, Tu-Anh (2021). Arbeiten mit Anforderungen: Requirements Management. In: Beate Bender/Kilian Gericke (Eds.). Pahl/Beitz Konstruktionslehre. Methoden und Anwendung erfolgreicher Produktentwicklung. 9th ed. Berlin/Heidelberg, Springer Vieweg, 211229.CrossRefGoogle Scholar
Göhlich, Dietmar/Fay, Tu-Anh/Jefferies, Dominic/Lauth, Enrico/Kunith, Alexander/Zhang, Xudong (2018). Design of urban electric bus systems. Design Science 4. https://doi.org/10.1017/dsj.2018.10.Google Scholar
Heitmeyer, Constance L./Jeffords, Ralph D./Labaw, Bruce G. (1996). Automated consistency checking of requirements specifications. ACM Transactions on Software Engineering and Methodology 5 (3), 231261. https://doi.org/10.1145/234426.234431.CrossRefGoogle Scholar
Horn, Laurence R. (2018). Contradiction. The Metaphysics Research Lab. Available online at https://plato.stanford.edu/archives/win2018/entries/contradiction/ (accessed 4/21/2022).Google Scholar
Hunter, Anthony/Nuseibeh, Bashar (1998). Managing inconsistent specifications. ACM Transactions on Software Engineering and Methodology 7 (4), 335367. https://doi.org/10.1145/292182.292187.CrossRefGoogle Scholar
Karlova-Bourbonus, Natali (2019). Automatic detection of contradictions in texts. Gießen, Universitätsbibliothek.Google Scholar
Li, Luyang/Qin, Bing/Liu, Ting (2017). Contradiction Detection with Contradiction-Specific Word Embedding. Algorithms 10 (2), 59. https://doi.org/10.3390/a10020059.CrossRefGoogle Scholar
Luisa, Mich/Mariangela, Franch/Pierluigi, Novi Inverardi (2004). Market research for requirements analysis using linguistic tools. Requirements Engineering 9 (1), 4056. https://doi.org/10.1007/s00766-003-0179-8.CrossRefGoogle Scholar
Maher, Mary Lou/Poon, Josiah (1996). Modeling Design Exploration as Co-Evolution. Computer-Aided Civil and Infrastructure Engineering 11 (3), 195209. https://doi.org/10.1111/j.1467-8667.1996.tb00323.x.CrossRefGoogle Scholar
Marneffe, Rafferty, Manning (2008). Finding Contradictions in Text. USA. Available online at https://nlp.stanford.edu/pubs/contradiction-acl08.pdf (accessed 4/13/2022).Google Scholar
Powers, David M. W. (2011). Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. International Journal of Machine Learning Technology 2:1, pp.37-63. https://doi.org/10.48550/arXiv.2010.16061.Google Scholar
Wynn, David C./Clarkson, P. John (2018). Process models in design and development. Research in Engineering Design 29 (2), 161202. https://doi.org/10.1007/s00163-017-0262-7.CrossRefGoogle Scholar
Zhao, Liping/Alhoshan, Waad/Ferrari, Alessio/Letsholo, Keletso J./Ajagbe, Muideen A./Chioasca, Erol-Valeriu/Batista-Navarro, Riza T. (2021). Natural Language Processing for Requirements Engineering. ACM Computing Surveys 54 (3), 141. https://doi.org/10.1145/3444689.Google Scholar