Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T09:09:31.907Z Has data issue: false hasContentIssue false

SYSTEMATIC ANALYSIS OF CHANGING VEHICLE EXTERIOR DIMENSIONS AND RELEVANT VEHICLE PROPORTIONS

Published online by Cambridge University Press:  27 July 2021

Daniel Holder*
Affiliation:
Institute for Engineering Design and Industrial Design, University of Stuttgart
*
Holder, Daniel, University of Stuttgart, Institute for Engineering Design and Industrial Design (IKTD), Germany, [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For the user perception of vehicles and consequently the success of automobile design, the body layout and especially the proportions of vehicles are pivotal. In the present study, the SAE main dimensions length (L108), wheelbase (L101), height (H100) and width (W103) of 697 vehicles from different OEMs were examined. The analysis reveals a tendency of increasing length, wheelbase and especially width of vehicles in recent years. Regarding the ratios of these dimensions there are clear correlations, as revealed by an analysis with linear regression. We find particular strong synchrony in the increases of the pairs W103 - L108 and L101 - L108 and lesser so between the ratio E = L108/L101 and the vehicle length. The latter can be explained by vehicles with a high L108 being less compact, i.e. the proportion E increases. Finally, it is discussed whether technological changes lead to revolutionary or evolutionary changes in dimensions. The historical development and the moderate proportional changes of BEVs indicate a measurable but evolutionary development. In contrast, disruptive technologies such as automated driving can significantly change the vehicle layout and thus encourage a more revolutionary change in proportions.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2021. Published by Cambridge University Press

References

Achleitner, A.; Antony, P.; Ascher, F.; Berger, E.; Burgers, C.; Döllner, G.; Friedrich, J. K. H.; Futschik, H. D.; Gruber, M.; Kiesgen, G.; Mohrdieck, C. H.; Noreikat, K. E.; Schulze, H.; Wagner, M.; Wöhr, M.: Formen und neue Konzepte, In: Braess, H.-H.; Seiffert, U. (Eds.) (2013), Vieweg-Handbuch Kraftfahrzeugtechnik, Springer Vieweg, Wiesbaden, pp.119219. http://doi.org/10.1007/978-3-658-01691-3Google Scholar
Ali, A. and Liem, A. (2014), “The use of formal aesthetic principles as a tool for design conceptualisation and detailing”, Espoo, Finland.Google Scholar
Barnum, G.J. and Mattson, C.A. (2010), “A Computationally Assisted Methodology for Preference-Guided Conceptual Design”, Journal of Mechanical Design, Vol. 132 No. 12, p. 12003-1-9. https://doi.org/10.1115/1.4002838CrossRefGoogle Scholar
Bloch, P.H. (1995), “Seeking the ideal form: Product design and consumer response”, Journal of Marketing, Jul No. 59, pp. 1629. http://doi.org/10.2307/1252116CrossRefGoogle Scholar
Davis, M.L. (1996), Visual design in dress, Prentice Hall, Upper Saddle River, N.J.Google Scholar
Diels, C., Siamatas, A. and Johnson, C. (2013), Designing for the new vehicle DNA: Evaluation of the MAYA principle for the rapid adoption of sustainable vehicles, 5th IASDR World Conference on Design Research, Tokyo, Japan. http://doi.org/10.13140/RG.2.1.2882.2889CrossRefGoogle Scholar
Elam, K. (2001), Geometry of design: Studies in proportion and composition, Design briefs Essential texts on design, Princeton Architectural Press, New York, NY.Google Scholar
Fahrmeir, L., Heumann, C., Künstler, R., Pigeot, I. and Tutz, G. (2016), Statistik: Der Weg zur Datenanalyse, Springer-Lehrbuch, 8., überarbeitete und ergänzte Auflage, Springer Spektrum, Berlin, Heidelberg. http://doi.org/10.1007/978-3-662-50372-0CrossRefGoogle Scholar
Holder, D. (2016), Gefallensurteil und Blickanalyse zum Fahrzeugdesign zukünftiger Aufbaugestalten anhand einer technischen Prognose, Stuttgart, Universität Stuttgart.Google Scholar
Holder, D. and Maier, T. (2012), “Neue Batteriekonzepte ein nutzerzentrierter Ansatz”, MTZ - Motortechnische Zeitschrift, Vol. 73 No. 10, pp. 762766. http://doi.org/10.1007/s35146-012-0478-zCrossRefGoogle Scholar
Jung, J.Y. (2018), “The Influence of Proportion Preference in Automotive Design: Comparison Between Japanese and German Automobiles”, Science of Emotion and Sensibility, Vol. 21 No. 1, pp. 8996. http://doi.org/10.14695/KJSOS.2018.21.1.89Google Scholar
Kellaris, James J. and Kent, Robert J. (1993), “Exploring Responses Elicited by Music Varying in Tempo, Tonality, and Texture,” Journal of Consumer Psychology, 2 (4), 381401. https://doi.org/10.1016/S1057-7408(08)80068-XCrossRefGoogle Scholar
Krasteva, P., Inkermann, D., Vietor, T. and Tzivanopoulos, T. (2017), “Zielkonfliktidentifikation zwischen Design, Technik und Ergonomie – Ein Lösungsansatz am Beispiel der Fahrzeugkonzeption”, in Stuttgarter Symposium für Produktentwicklung 2017, pp. 110.Google Scholar
Kraus, W. (2007), “Grundsätzliche Aspekte des Automobildesigns”, In: Braess, H.-H. (Ed.), Automobildesign und Technik: Formgebung, Funktionalität, Technik, Vieweg, Wiesbaden. pp. 3065. http://doi.org/10.1007/978-3-8348-9411-3CrossRefGoogle Scholar
Kronthaler, F. (2015), Statistik angewandt: Datenanalyse ist (k)eine Kunst Excel Edition, Springer-Lehrbuch, Aufl. 2016, Springer, Berlin.Google Scholar
Löhr, K. (2016), “The Science of Innovation. A Comprehensive Approach for Innovation Management”, De Gruyter Oldenbourg, Berlin, Boston.CrossRefGoogle Scholar
Luccarelli, M., Lienkamp, M., Matt, D. and Russo Spena, P. (2014a), “Automotive Design Quantification: Parameters Defining Exterior Proportions According to Car Segment”, in SAE 2014 World Congress & Exhibition, Warrendale, United States. http://doi.org/10.4271/2014-01-0357CrossRefGoogle Scholar
Luccarelli, M. and Matt, D., Russo Spena, P., Lienkamp, M. (2014b), “Purpose Design for Electric Cars: Parameters Defining Exterior Vehicle Proportions”, 3rd Conference on Future Automotive Technology - Focus Electromobility, TU München, p.17. http://doi.org/10.13140/2.1.3077.4727Google Scholar
Macey, S. and Wardle, G. (2014), H-point: The fundamentals of car design & packaging, Design Studio Press; Art Center College of Design, Culver City, California, Pasadena, California.Google Scholar
Mercedes-Benz (2021), The Mercedes-Benz F 015 Luxury in Motion. [online] Daimler AG. Available at: www.mercedes-benz.com (1th March 2021).Google Scholar
Morche, D.; Schmitt, F.; Genuit, K; Elsen, O.; Kampker, A.; Friedrich, B. (2013), “Fahrzeugkonzeption für die Elektromobilität” in: Kampker, A., Vallée, D. and Schnettler, A. (Ed.), Elektromobilität: Grundlagen einer Zukunftstechnologie, Springer Vieweg, Berlin, pp. 149234. https://doi.org/10.1007/978-3-642-31986-0CrossRefGoogle Scholar
Oehme, A. (2011), Ästhetisches Verständnis und ästhetische Wertschätzung von Automobildesign. Eine Frage der Expertise, Potsdam Universität Potsdam.Google Scholar
SAE International (2009), Surface Vehicle Recommended Practice - Motor Vehicle Dimensions No. J1100 NOV 2009.Google Scholar
Seeger, H. (2014), Basiswissen Transportation-Design: Anforderungen - Lösungen - Bewertungen, Springer Fachmedien, Wiesbaden. https://doi.org/10.1007/978-3-658-04449-7CrossRefGoogle Scholar
Tzivanopoulos, T., Watschke, H., Krasteva, P. and Vietor, T. (2015), “Neue Denkansätze in der Fahrzeugkonzeption”, ATZ - Automobiltechnische Zeitschrift, Vol. 117, No. 9, pp. 1621. http://doi.org/10.1007/s35148-015-0101-yCrossRefGoogle Scholar
Van Hooydonk, A. (2012), In: Lenaerts, B.; Mol, L. D. (Eds.): Ever since I was a young boy I've been drawing cars, Delius Klasing, Bielefeld, pp. 216239.Google Scholar
Volkswagen (2021), Der vollelektrische ID.4. [online] Volkswagen AG. Available at: www.volkswagen.de (1th March 2021).Google Scholar
Wallentowitz, H., Freialdenhoven, A. and Olschewski, I. (2010), Strategien zur Elektrifizierung des Antriebstranges: Technologien, Märkte und Implikationen, Vieweg+Teubner Verlag / GWV Fachverlage, Wiesbaden. http://doi.org/10.1007/978-3-8348-9910-1CrossRefGoogle Scholar