No CrossRef data available.
Article contents
Supporting the Transition Towards Electromobility in the Construction and Mining Sector: Optimization Framework and Demonstration on an Electrical Hauler
Published online by Cambridge University Press: 26 May 2022
Abstract
The paper presents a framework for the integration of the system's design variables, state variables, control strategies, and contextual variables into a design optimization problem to assist early-stage design decisions. The framework is based on a global optimizer incorporating Dynamic Programming, and its applicability is demonstrated by the conceptual design of an electrical hauler. Pareto front of optimal design solutions, in terms of time and cost, together with optimal velocity profiles and battery state-of-charge is visualized for the given mining scenario.
Keywords
- Type
- Article
- Information
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
- Copyright
- The Author(s), 2022.