Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-05T09:41:48.815Z Has data issue: false hasContentIssue false

A PATTERN LANGUAGE APPROACH TO IDENTIFY APPROPRIATE MACHINE LEARNING ALGORITHMS IN THE CONTEXT OF PRODUCT DEVELOPMENT

Published online by Cambridge University Press:  19 June 2023

Sebastian Sonntag*
Affiliation:
University of Duisburg-Essen
Janosch Luttmer
Affiliation:
University of Duisburg-Essen
Robin Pluhnau
Affiliation:
University of Duisburg-Essen
Arun Nagarajah
Affiliation:
University of Duisburg-Essen
*
Sonntag, Sebastian, Universität Duisburg-Essen, Germany, [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The product development process faces several challenges, such as an increasing and differentiated number of customer requirements, increasing product complexity, and shortened time-to-market. To address these challenges, the implementation of automation approaches in form of machine learning (ML) algorithms appears promising. However, companies lack the implementation of these approaches in their processes, inter alia due to inadequate knowledge and experience in this field. Therefore, the aim of this paper is to develop a structured formulized way of characterising ML algorithms, which can support non-experts in identifying the optimal algorithm to solve a given problem. First, existing approaches covering the determination of appropriate ML algorithms for a given task are examined. Based on this, a pattern language approach is introduced to characterise ML algorithms and problems, allowing matching to be performed to identify the most suitable one for a given task. Due to their broad application, the concept is demonstrated by creating patterns for decision trees and artificial neural networks. A study is conducted to prove that the proposed concept is appropriate to support the ML algorithm selection.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2023. Published by Cambridge University Press

References

Bae, J.K. and Kim, J. (2011), “Product development with data mining techniques: A case on design of digital camera”, Expert Systems with Applications, Vol. 38 No. 8, pp. 92749280. http://doi.org/10.1016/j.eswa.2011.01.030.CrossRefGoogle Scholar
Bang, H. and Selva, D. (2016), “iFEED: Interactive Feature Extraction for Engineering Design”, in American Society of Mechanical Engineers Digital Collection. http://doi.org/10.1115/DETC2016-60077.CrossRefGoogle Scholar
Baxter, D., Gao, J., Case, K., Harding, J., Young, B., Cochrane, S. and Dani, S. (2008), “A framework to integrate design knowledge reuse and requirements management in engineering design”, Robotics and Computer-Integrated Manufacturing, Vol. 24 No. 4, pp. 585593. http://doi.org/10.1016/j.rcim.2007.07.010.CrossRefGoogle Scholar
Bertoni, A. (2018), “Role and Challenges of Data-Driven Design in the Product Innovation Process”, IFAC-PapersOnLine, Vol. 51 No. 11, pp. 11071112. http://doi.org/10.1016/j.ifacol.2018.08.455.CrossRefGoogle Scholar
Borchers, J.O. (2001), “A pattern approach to interaction design”, AI & Society, Vol. 15 No. 4, pp. 359376. http://doi.org/10.1007/BF01206115.CrossRefGoogle Scholar
Chakrabarti, A., Shea, K., Stone, R., Cagan, J., Campbell, M., Hernandez, N.V. and Wood, K.L. (2011), “Computer-Based Design Synthesis Research: An Overview”, Journal of Computing and Information Science in Engineering, Vol. 11 No. 2. http://doi.org/10.1115/1.3593409.CrossRefGoogle Scholar
Chen, H.-Y. and Chang, H.-C. (2016), “Consumers' perception-oriented product form design using multiple regression analysis and backpropagation neural network”, Artificial Intelligence for Engineering Design, Analysis and Manufacturing, Vol. 30 No. 1, pp. 6477. http://doi.org/10.1017/S0890060415000165.CrossRefGoogle Scholar
Dunjko, V. and Briegel, H.J. (2018), “Machine learning & artificial intelligence in the quantum domain: a review of recent progress”, Reports on progress in physics. Physical Society (Great Britain), Vol. 81 No. 7, p. 74001. http://doi.org/10.1088/1361-6633/aab406.CrossRefGoogle Scholar
Entner, D., Prante, T., Vosgien, T., Zăvoianu, A.-C., Saminger-Platz, S., Schwarz, M. and Fink, K. (2019), “Potential identification and industrial evaluation of an integrated design automation workflow”, Journal of Engineering, Design and Technology, Vol. 17 No. 6, pp. 10851109. http://doi.org/10.1108/JEDT-06-2018-0096.CrossRefGoogle Scholar
Feldhusen, J. and Bungert, F. (2007), “Pattern Languages: An approach to manage archetypal engineering knowledge”, Guidelines for a Decision Support Method Adapted to NPD Processes.Google Scholar
Gerschütz, B., Schleich, B. and Wartzack, S. (2021), “A semantic web approach for structuring data-driven methods in the product development process”, paper presented at DFX 2021 32nd SYMPOSIUM DESIGN FOR X, available at: https://www.designsociety.org/publication/43575/a+semantic+web+approach+for+structuring+data-driven+methods+in+the+product+development+process. http://doi.org/10.35199/dfx2021.15.CrossRefGoogle Scholar
Giering, O. (2022), “Künstliche Intelligenz und Arbeit: Betrachtungen zwischen Prognose und betrieblicher Realität”, Zeitschrift für Arbeitswissenschaft, Vol. 76 No. 1, pp. 5064. http://doi.org/10.1007/s41449-021-00289-0.CrossRefGoogle Scholar
Hashimi, H., Hafez, A. and Mathkour, H. (2015), “Selection criteria for text mining approaches”, Computers in Human Behavior, Vol. 51, pp. 729733. http://doi.org/10.1016/j.chb.2014.10.062.CrossRefGoogle Scholar
Hein, A.M. and Condat, H. (2018), “Can Machines Design? An Artificial General Intelligence Approach”, in Springer, Cham, pp. 8799. http://doi.org/10.1007/978-3-319-97676-1_9.CrossRefGoogle Scholar
Hoyle, C., Chen, W., Wang, N. and Gomez-levi, G. (2009), “Understanding Heterogeneity of Human Preferences for Engineering Design”, DS 58-5: Proceedings of ICED 09, the 17th International Conference on Engineering Design, Vol. 5, Design Methods and Tools (pt. 1), Palo Alto, CA, USA, 24.-27.08.2009, pp. 229240.Google Scholar
Hsiao, S.-W. and Huang, H. (2002), “A neural network based approach for product form design”, Design Studies, Vol. 23 No. 1, pp. 6784. http://doi.org/10.1016/s0142-694x(01)00015-1.CrossRefGoogle Scholar
Jetter, A. (2005), Produktplanung im Fuzzy Front End: Handlungsunterstützungssystem auf der Basis von Fuzzy Cognitive Maps, Forschungs-/Entwicklungs-/Innovations-Management, Gabler Edition Wissenschaft, Deutscher Universitätsverlag, Wiesbaden. http://doi.org/10.1007/978-3-322-82157-7.CrossRefGoogle Scholar
Kutschenreiter-Praszkiewicz, I. (2013), “Application of neural network in QFD matrix”, Journal of Intelligent Manufacturing, Vol. 24 No. 2, pp. 397404. http://doi.org/10.1007/s10845-011-0604-7.CrossRefGoogle Scholar
Lasi, H., Fettke, P., Kemper, H.-G., Feld, T. and Hoffmann, M. (2014), “Industry 4.0”, Business & Information Systems Engineering, Vol. 6 No. 4, pp. 239242. http://doi.org/10.1007/s12599-014-0334-4.CrossRefGoogle Scholar
Lickert, H., Wewer, A., Dittmann, S., Bilge, P. and Dietrich, F. (2021), “Selection of Suitable Machine Learning Algorithms for Classification Tasks in Reverse Logistics”, Procedia CIRP, Vol. 96, pp. 272277. http://doi.org/10.1016/j.procir.2021.01.086.CrossRefGoogle Scholar
Lundborg, M., Märkel, C. and Wagner, K. (2019), “Künstliche Intelligenz im Mittelstand. Relevanz, Anwendungen, Transfer”, Eine Erhebung der Mittelstand-Digital Begleitforschung, Vol. 2019.Google Scholar
Association, Management, I.R. (2022), Research anthology on artificial neural network applications, IGI Global, Hershey, Pennsylvania (701 E. Chocolate Avenue, Hershey, Pennsylvania, 17033, USA). http://doi.org/10.4018/978-1-6684-2408-7.CrossRefGoogle Scholar
Metternich, J., Biegel, T., Bretones Cassoli, B. and Hoffmann, F. (2021), Künstliche Intelligenz zur Umsetzung von Industrie 4.0 im Mittelstand: Expertise des Forschungsbeirats der Plattform Industrie 4.0, München.Google Scholar
Rashid, T. and Langenau, F. (2017), Neuronale Netze selbst programmieren: Ein verständlicher Einstieg mit Python, Animals, O'Reilly Verlag, Heidelberg.Google Scholar
Reed, K. and Gillies, D. (2016), “Automatic derivation of design schemata and subsequent generation of designs”, Artificial Intelligence for Engineering Design, Analysis and Manufacturing, Vol. 30 No. 4, pp. 367378. http://doi.org/10.1017/S0890060416000354.CrossRefGoogle Scholar
Riesener, M., Doelle, C., Mendl-Heinisch, M. and Klumpen, N. (2020), “Identification of evaluation criteria for algorithms used within the context of product development”, Procedia CIRP, Vol. 91, pp. 508515. http://doi.org/10.1016/j.procir.2020.02.207.CrossRefGoogle Scholar
Rigger, E. and Vosgien, T. (2018), “Design automation state of practice - potential and opportunities”, paper presented at DESIGN 2018 - 15th International Design Conference, available at: https://www.designsociety.org/publication/40462/design+automation+state+of+practice+potential+and+opportunities. http://doi.org/10.21278/idc.2018.0537.CrossRefGoogle Scholar
Seo, K.-K., Min, S.-H. and Yoo, H.-W. (2005), “Artificial Neural Network Based Life Cycle Assessment Model for Product Concepts Using Product Classification Method”, in Hutchison, D., Kanade, T., Kittler, J. and et al. (Eds.), Computational Science and Its Applications – ICCSA 2005, Lecture notes in computer science, Vol. 3483, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 458466. http://doi.org/10.1007/11424925_49.Google Scholar
Shabestari, S.S. and Bender, B. (2017), “Enhanced integrated sensitivity analysis in model based QFD method”, DS 87-4 Proceedings of the 21st International Conference on Engineering Design (ICED 17) Vol 4: Design Methods and Tools, Vancouver, Canada, 21-25.08.2017, pp. 317326.Google Scholar
Sousa, I., Wallace, D. and Eisenhard, J.L. (2000), “Approximate Life-Cycle Assessment of Product Concepts Using Learning Systems”, Journal of Industrial Ecology, Vol. 4 No. 4, pp. 6181. http://doi.org/10.1162/10881980052541954.CrossRefGoogle Scholar
Souza, J., Matwin, S. and Japkowicz, N. (2002), Evaluating data mining models: a pattern language.Google Scholar
Tang, C.Y., Fung, K.Y., Lee, E.W., Ho, G., Siu, K.W. and Mou, W.L. (2013), “Product form design using customer perception evaluation by a combined superellipse fitting and ANN approach”, Advanced Engineering Informatics, Vol. 27 No. 3, pp. 386394. http://doi.org/10.1016/j.aei.2013.03.006.CrossRefGoogle Scholar
Tseng, I., Cagan, J. and Kotovsky, K. (2012), “Concurrent Optimization of Computationally Learned Stylistic Form and Functional Goals”, Journal of Mechanical Design, Vol. 134 No. 11. http://doi.org/10.1115/1.4007304.CrossRefGoogle Scholar
Tucker, C.S. and Kim, H.M. (2009), “Data-Driven Decision Tree Classification for Product Portfolio Design Optimization”, Journal of Computing and Information Science in Engineering, Vol. 9 No. 4. http://doi.org/10.1115/1.3243634.CrossRefGoogle Scholar
Wang, Y. and Zhang, J. (2017), “Bridging the semantic gap in customer needs elicitation: a machine learning perspective”, DS 87-4 Proceedings of the 21st International Conference on Engineering Design (ICED 17) Vol 4: Design Methods and Tools, Vancouver, Canada, 21-25.08.2017, pp. 643652.Google Scholar
Waring, J., Lindvall, C. and Umeton, R. (2020), “Automated machine learning: Review of the state-of-the-art and opportunities for healthcare”, Artificial Intelligence in Medicine, Vol. 104, p. 101822. http://doi.org/10.1016/j.artmed.2020.101822.CrossRefGoogle ScholarPubMed
Ye, N. (2013), Data mining: Theories, algorithms, and examples, Human Factors and Ergonomics Series, 1st edition, CRC Press an imprint of Taylor and Francis, Boca Raton, FL. http://doi.org/10.1201/b15288.CrossRefGoogle Scholar
Zhan, Y., Tan, K.H. and Huo, B. (2019), “Bridging customer knowledge to innovative product development: a data mining approach”, International Journal of Production Research, Vol. 57 No. 20, pp. 63356350. http://doi.org/10.1080/00207543.2019.1566662.CrossRefGoogle Scholar
Zhang, Y. (Ed.) (2010), New Advances in Machine Learning, InTech. http://doi.org/10.5772/225.CrossRefGoogle Scholar