Article contents
On Diverse System-Level Design Using Manifold Learning and Partial Simulated Annealing
Published online by Cambridge University Press: 26 May 2022
Abstract
The goal in system-level design is to generate a diverse set of high-performing design configurations that allow trade-offs across different objectives and avoid early concretization. We use deep generative models to learn a manifold of the valid design space, followed by Monte Carlo sampling to explore and optimize design over the learned manifold, producing a diverse set of optimal designs. We demonstrate the efficacy of our proposed approach on the design of an SAE race vehicle and propeller.
- Type
- Article
- Information
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
- Copyright
- The Author(s), 2022.
References
- 3
- Cited by