Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-20T16:33:41.807Z Has data issue: false hasContentIssue false

A new approach to derive variation shares by combining the C&C² approach and the PGE model

Published online by Cambridge University Press:  16 May 2024

Peter Michael Tröster*
Affiliation:
Karlsruhe Institute of Technology, Germany
Giorgi Tsutskiridze
Affiliation:
Karlsruhe Institute of Technology, Germany
Tobias Dieck
Affiliation:
Karlsruhe Institute of Technology, Germany
Albert Albers
Affiliation:
Karlsruhe Institute of Technology, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper introduces a method to derive variation shares in engineering design, merging the Contact & Channel Approach (C&C²) with the model of PGE - Product Generation Engineering. It focuses on one-piece parts, enhancing precision in identifying component variations. The integration allows for detailed qualitative modeling and subcomponent analysis, improving design efficiency and innovation, illustrated with bottle examples. This research advances engineering design by enabling more accurate categorization of system variations.

Type
Design Theory and Research Methods
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2024.

References

Albers, Albert/Bursac, Nikola/Rapp, Simon (2017). PGE – Produktgenerationsentwicklung am Beispiel des Zweimassenschwungrads. Forschung im Ingenieurwesen 81 (1), 1331. https://doi.org/10.1007/s10010-016-0210-0.CrossRefGoogle Scholar
Albers, Albert/Bursac, Nikola/Wintergerst, Eike. Product Generation Development - Importance and Challenges from a Design Research Perspective: Proceedings of the International Conference on Mechanical Engineering (ME 2015), Vienna, Austria, March 15-17, 2015 : proceedings of the International Conference on Theoretical Mechanics and Applied Mechanics (TMAM 2015) Vienna, Austria, March, 15-17, 2015. In: New Developments in Mechanics and Mechanical Engineering, 1621.Google Scholar
Albers, Albert/Haug, Fabian/Heitger, Nicolas/Fahl, Joshua/Hirschter, Tobias (Eds.) (2019). Engineering Generations to Control PGE - Product Generation Engineering: From Component to Function Orientation in Automotive Development.Google Scholar
Albers, Albert/Wintergerst, Eike (2014). The Contact and Channel Approach (C&C2-A): Relating a System's Physical Structure to Its Functionality. In: Amaresh Chakrabarti/Lucienne T. M. Blessing (Eds.). An Anthology of Theories and Models of Design. London, Springer London, 151171.CrossRefGoogle Scholar
Altschuller, G. S. (1984). Creativity as an exact science. The theory of the solution of inventive problems. New York, NY, Gordon and Breach.CrossRefGoogle Scholar
Birkhofer, Herbert (2011). The Future of Design Methodology. London, Springer London.CrossRefGoogle Scholar
Blessing, Lucienne T.M./Chakrabarti, Amaresh (2009). DRM, a Design Research Methodology. London, Springer London.CrossRefGoogle Scholar
Eigner, Martin/Roubanov, Daniil/Zafirov, Radoslav (2014). Modellbasierte virtuelle Produktentwicklung. Berlin, Heidelberg, Springer Berlin Heidelberg.CrossRefGoogle Scholar
Gericke, Kilian/Eckert, Claudia/Stacey, Martin (2017). What do we need to say about a design method: Proceedings of the 21st International Conference on Engineering Design (ICED17), Vol. 7: Design Theory and Research Methodology.Google Scholar
Grauberger, Patric/Eisenmann, Matthias/Windisch, Emily/Matthiesen, Sven (2022). Experimental method validation at the Contact and Channel Approach (181). (accessed 7/2/2021).Google Scholar
Grauberger, Patric/Wessels, Holger/Gladysz, Bartosz/Bursac, Nikola/Matthiesen, Sven/Albers, Albert (2020). The contact and channel approach – 20 years of application experience in product engineering. Journal of Engineering Design 31 (5), 241265. https://doi.org/10.1080/09544828.2019.1699035.CrossRefGoogle Scholar
Hacker, Winfried (1997). Improving engineering design - contributions of cognitive ergonomics. ERGONOMICS 1997 (40), 10881096. https://doi.org/10.1080/001401397187621.CrossRefGoogle Scholar
Hedge, Sudarshan/Ananthasuresh, G. K. (2009). Design of Compliant Mechanisms for Practical Applications using Selection Maps. 14th National Conference on Machines and Mechanisms.Google Scholar
Matthiesen, Sven. Gestaltung - Prozess und Methoden. In: Pahl/Beitz Konstruktionslehre, 397465.CrossRefGoogle Scholar
Matthiesen, Sven/Grauberger, Patric/Hölz, Kevin/Nelius, Thomas/Bremer, Frank/Wettstein, Andreas/Gessinger, Annabell/Pflegler, Benjamin/Nowoseltschenko, Konstantin/Voß, Katharina (2018). Modellbildung mit dem C&C²-Ansatz in der Gestaltung. Techniken zur Analyse und Synthese. KIT Scientific Working Papers; 58.Google Scholar
Suh Nam, P. (1998). Axiomatic Design Theory for Systems. Research in Engineering Design 10 (4), 189209. https://doi.org/10.1007/s001639870001.Google Scholar
Tomiyama, Tetsuo/Yoshioka, Masaharu/Tsumaya, Akira (2002). A knowledge operation model of synthesis. In: Chakrabarti, Amaresh (Ed.). Engineering Design Synthesis. Understanding, Approaches and Tools. London, Springer, 6790.CrossRefGoogle Scholar
Tröster, Peter M./Schmidt, David/Albers, Albert (2023a). A Designation Guide for Consistent Cross-System-Level Modeling of Embodiment Function Relations. Procedia CIRP 119, 12221227. https://doi.org/10.1016/j.procir.2023.03.158.CrossRefGoogle Scholar
Tröster, Peter Michael/Prager, Felix/Schmid, David/Albers, Albert (2023b). Modellierung von abschnittsweisen Gestalt-Funktion-Zusammenhängen mithilfe des C&C2-Ansatzes. Modeling of Embodiment Function Relations using the C&C2-Approach. In: Katharina Hölzle/Matthias Kreimeyer/Daniel Roth et al. (Eds.). Stuttgarter Symposium für Produktentwicklung SSP 2023 | Tagungsband | Stuttgart, 25. Mai 2023, Stuttgarter Symposium für Produktentwicklung, Stuttgart, 25.05.2023, 175186.Google Scholar
Weber, Christian (2005). CPM/PDD – An extended theoretical approach to modelling products and product development processes. In: H. Bley/H. Jansen/F.-L. Krause et al. (Eds.). Advances in methods and systems for development of products and processes. Proceedings of the 2. German-Israeli Symposium for Design and Manufacturing, Berlin, 6.-10.7.2005. Stuttgart, Fraunhofer-IRB-Verlag, 159179.Google Scholar
Yoshikawa, H/Man-Machine Communication in CAD/CAM (1981). General Design Theory and a CAD system.Google Scholar